
2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)

JuktoMala: A Handwritten Bengali Consonant
Conjuncts Dataset for Optical Character Recognition

Using BiT-based M-ResNet-101x3 Architecture
Md. Mehedi Hasan∗, Md. Ali Hossain†, Azmain Yakin Srizon‡ and Abu Sayeed§

Department of Computer Science & Engineering
Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh

Emails: ∗mmehedihasann@gmail.com, †ali.ruet@gmail.com, ‡azmainsrizon@gmail.com, §abusayeed.cse@gmail.com

Abstract—Bengali, the seventh most spoken language in the
world by the number of speakers, doesn’t have a well-established
Optical Character Recognition (OCR) system for handwritten
texts. One of the major reasons behind this lacking is contributed
to having no complete conjuncts database. No dataset available
today covers all the conjunct characters that are used by authors
around the globe. In this research, we prepared a complete
dataset consisting of 292 consonant conjunct characters, which
is the biggest consonant conjunct character dataset to date
by the number of classes available in the literature to our
knowledge. We applied Big Transfer-based M-ResNet-101x3 Deep
Convolutional Neural Network (DCNN) which achieves 91.32%
accuracy that outperforms the baseline EfficientNetB7 approach
which obtained 81.05% accuracy.

Index Terms—Big Transfer, M-ResNet-101x3, Convolutional
Neural Network, Handwritten compound character, Transfer
Learning

I. INTRODUCTION

One of the most useful tool human created to make comput-
ers mimic human intelligence is Optical Character Recognition
(OCR) which is converting an image of texts into machine-
editable texts [1]. This means the computer that can do OCR,
understand the language written on the paper, and can distin-
guish each letter, number, punctuation mark, etc. This closes
the gap between machine and human intelligence. Having a
good OCR system can make a huge impact on the day-to-
day life of general people as well as researchers. OCR system
can be used to make historical documents searchable which
will allow researchers to gain insights from those historical
documents easily and this will also make them easy to preserve
for future generations.

Various languages in this world now have a successful
implementation of OCR systems that can convert both printed
and handwritten texts into machine-editable texts, such as
English. However, this is not true for all languages since
some languages are cursive and complex and have more than
one representation of the same character. This fact contributes
to the lacking of a good OCR system for some languages
including Bengali, which doesn’t have a very accurate OCR
for handwritten texts. The main reason behind this is the lack
of a complete dataset that covers all the vowels, consonants,
numbers, punctuation, and most important part: consonant
conjuncts. Bengali has 292 consonant conjuncts which are

being used by authors in the current and recent literature [2].
There are some other factors too for example high variation
from person to person, different styles for the same character,
cursive nature, etc. All these factors contributed to the lack of
a good OCR system for handwritten characters in the Bengali
language.

In this research paper, we created a new dataset called
JuktoMala which contains 292 classes, each class having 10
characters of consonant conjuncts which are being used in
the current literature and we also applied a modified Efficient-
NetB7 based CNN as a baseline which achieves good accuracy
considering very few available data.

II. LITERATURE REVIEW

In the domain of OCR, several researchers are accomplish-
ing major contributions to various languages available in the
world. In the literature, we can see evidence of the amazing
work of various languages. English handwritten characters [3],
[4], Spanish handwritten characters [5], [6], Hindi handwritten
characters [7], [8], etc. got attention from researchers. It is a
matter of regret that, the Bengali language did receive some
attention from researchers which is not significant enough.
And there have been very few numbers of literature that
addressed the complex task of recognizing consonant con-
juncts or compound characters. In Indo-European languages,
compound characters are a common feature. There can be
a significant number of compound characters in a language
such as the Bengali language has 292 different compound
characters [2]. Scientists implemented basic Bengali character
recognition for some time now. Early works suggest that the
basic 50 characters consisting of 39 consonants and 11 vowels
have got some good attention. In the early works, Multi-Layer
Perceptron (MLP) on stroke feature of Bengali basic characters
has been used with an overall accuracy of 84.33% [9]. Another
study has achieved 92.14% accuracy using a chain code
histogram [10]. These early works were on 50 basic characters
only which led to the development of CMATERdb [11], [12],
a Bengali handwritten character dataset that contains the basic
50 characters, as well as numerals, modifiers, and compound
characters. There has been huge attention to this dataset due
to its diversity and features. Some research still used only
50 basic characters from this dataset but suggested a deep

979-8-3503-4536-0/23/$31.00 ©2023 IEEE

Fig. 1: Sample of collected data in form

convolutional neural network [13]. Later some researchers
applied MobileNetV1 to the basic 50 characters[14].

Hybrid HOG-based CNN has been applied by Sharif et. al
who achieved 92.57% and 92.77% accuracy for 171 and 199
classes respectively [15]. Ashiquzzaman et al. applied a deep
CNN-based approach using ELU and dropout considering
8000 test images and 34000 train images and achieved 93.68%
overall accuracy[16]. Deep CNN with point-light source-based
shadow features and histogram of oriented pixel positions fea-
tures was used recently[17]. The Ensemble technique has been
investigated as well[18]. Some researchers used deep CNN
and outperformed previous studies while considering basic
characters, numerals, modifiers, and compound characters[19].
The authors of CMATERdb also applied the soft computing
paradigm in a two-pass approach and achieved 87.26% overall
accuracy for 256 classes[20]. In this research, we created a
new dataset named JuktoMala which contains 292 compound
characters which are the most by number of classes in a
Bengali handwritten character dataset. We also created an

Fig. 2: Data processing steps

EffiecientNetB7-based Deep CNN which is applied to this
dataset. We compared our result with the baseline Efficient-
NetB7 approach on this dataset.

III. MATERIALS AND METHODS

This section contains the description of our dataset and the
collection process through which the data has been gathered,
augmentation, dataset preparation, and attention-based deep
CNN architecture.

A. Data Collection Process

The dataset was collected from the students of the Computer
Science & Engineering department of Rajshahi University of
Engineering & Technology. Both male and female participants
took part in the data collection process. They wrote each com-
pound character from the 292 classes of compound characters
and those were processed by us later. A sample of such data
collection form (filled) is illustrated in Figure 1.

B. Data Processing

Every scanned paper from our participant was fed into
data processing steps where we carefully crop out every
single compound character individually. Then the images were
transformed into binary using a threshold value of 127. After
that, we apply the trimming process to reduce the unnecessary
blank background areas from those individual images. And
finally, they were resized into 256× 256× 3 resolution since
the model requires RGB image.

C. Dataset Description

There are 292 classes of compound characters in this
JuktoMala dataset, each class having 10 images, totaling 2920
images. All the images are grayscale. The dataset is partitioned
into the test, train, and validation datasets. The test set has
30% of the dataset. The rest 70% of the total dataset was
augmented using the following parameter shown in Table III.
After that, the augmented dataset was split again into 80:20
portions from which 80% of the dataset was used as the train
set and 20% of the data was used as the validation set. This
process has been illustrated in Figure 2. The original dataset
can be accessed at https://drive.google.com/file/d/1ngbplIL48
E6MSZnMJN4taJOFnLTvL4o/view?usp=share link

Fig. 3: Proposed Big Transfer-based M-ResNet101x3 architecture

Fig. 4: Residual block of ResNet architecture

Fig. 5: Loss curve of BiT-based M-ResNet 101x3 model

Fig. 6: Misclassification due to similar classes

D. Proposed DCNN Architecture

We have created an M-ResNet 101 × 3 big transfer-
based deep convolutional neural network, which is shown
in Figure 3. The input image will be fed into the CNN
backbone which extracts features from image. This backbone
implements the M-Resnet101 × 3 architecture, trained to
perform image classification on ImageNet ILSRCV-2012-CLS,

a dataset containing around 1.3 million images labeled with
1,000 classes. Its outputs are the 6144-dimensional feature
vectors, before the multi-label classification head. Global
Average Pooling was added to get the average of the output
feature vector, which further reduces the dimension of the
feature vector. The output of this will be fed into a dense layer
with 512 neurons with Rectified Linear Unit (ReLU) being
used. ReLU is very simple and easy to calculate. Its derivative
is also easy to calculate. To prevent overfitting, a dropout layer
with 50% dropout has been used which will randomly turn
off 50% of the neuron during the training period. This will
force the network to explore the new unexplored path. And
finally, the output layer with 292 neurons for 292 classes with
a SoftMax activation layer has been used. We will now discuss
Medium ResNet 101 with 3 times wider CNN architecture in
detail.

E. Resnet 101

Convolutional Neural Network (CNN) captures the spatial
and temporal features from an image using the convolution
operation shown in the following equation.

g(x, y) = w∗f(x, y) =
a∑

dx=−1

b∑
dy=−b

w(dx, dy)f(x−dx, y−dy)

where g(x,y) is the filtered or convolved image, f(x,y) is the
original image, and w is the filter kernel.

ResNet or residual network is an outcome of Microsoft
research which was invented in search of creating more deep
CNN without facing vanishing gradient problems [21]. They
did it by adding some residual connection between some layers
which helps calculate the gradient during backpropagation.
ResNet between Resnet 50 and Resnet 152 in terms of layers,
performance, and accuracy.

Big Transfer is a google research project where they used
group normalization instead of batch normalization and weight
standardization and some heuristic approach to creating a
transfer learning mechanism that performs well even when
there is only one image per class to 1 million images per
class[22]. It scales well and achieves state-of-the-art accuracy
in various classification and related tasks. The residual block
of ResNet architecture is illustrated in Figure 4.

F. Hyperparameters

A learning rate of 0.00001 has been utilized in this research.
The batch size was set to 6. Adam optimizer has been used.
A total of 50 epochs were set to run initially. However, early
stopping was enabled with patience set to 3 and learning rate
reduction on the plateau of patience 1 with a factor of 0.2.

TABLE I: Classwise accuracy (for 0 to 200 classes)

Class Accuracy Class Accuracy Class Accuracy
0 100 67 100 134 100
1 100 68 66.67 135 100
2 100 69 100 136 66.67
3 100 70 66.67 137 100
4 100 71 100 138 100
5 100 72 66.67 139 0
6 100 73 100 140 100
7 100 74 100 141 100
8 100 75 66.67 142 66.67
9 100 76 100 143 100
10 100 77 100 144 100
11 100 78 100 145 100
12 100 79 100 146 100
13 100 80 100 147 100
14 100 81 100 148 100
15 100 82 66.67 149 100
16 100 83 100 150 100
17 100 84 33.33 151 66.67
18 100 85 100 152 100
19 100 86 100 153 100
20 100 87 100 154 100
21 100 88 100 155 100
22 100 89 66.67 156 100
23 100 90 100 157 100
24 100 91 100 158 100
25 100 92 100 159 33.33
26 100 93 100 160 100
27 100 94 100 161 66.67
28 100 95 100 162 100
29 100 96 100 163 100
30 100 97 100 164 33.33
31 100 98 100 165 100
32 100 99 100 166 100
33 100 100 100 167 66.67
34 100 101 100 168 66.67
35 66.67 102 66.67 169 100
36 100 103 100 170 33.33
37 100 104 100 171 100
38 100 105 33.33 172 100
39 100 106 100 173 66.67
40 100 107 100 174 100
41 33.33 108 100 175 100
42 100 109 66.67 176 33.33
43 100 110 100 177 100
44 100 111 100 178 100
45 100 112 100 179 100
46 33.33 113 66.67 180 100
47 100 114 100 181 100
48 100 115 100 182 100
49 100 116 100 183 100
50 100 117 100 184 66.67
51 100 118 100 185 100
52 66.67 119 100 186 100
53 100 120 33.33 187 100
54 66.67 121 100 188 66.67
55 33.33 122 66.67 189 100
56 100 123 100 190 100
57 100 124 100 191 100
58 100 125 100 192 100
59 66.67 126 100 193 100
60 100 127 100 194 100
61 100 128 100 195 100
62 100 129 33.33 196 100
63 100 130 100 197 100
64 100 131 100 198 100
65 100 132 100 199 100
66 33.33 133 100 200 100

TABLE II: Classwise accuracy (for 201 to 291 classes)

Class Accuracy Class Accuracy
201 100 247 100
202 100 248 100
203 100 249 100
204 100 250 100
205 100 251 100
206 100 252 100
207 100 253 100
208 100 254 100
209 33.33 255 66.67
210 100 256 33.33
211 100 257 0
212 66.67 258 100
213 100 259 100
214 100 260 100
215 100 261 66.67
216 100 262 100
217 100 263 100
218 100 264 100
219 33.33 265 100
220 100 266 66.67
221 100 267 100
222 66.67 268 33.33
223 100 269 100
224 100 270 100
225 66.67 271 100
226 100 272 66.67
227 100 273 100
228 100 274 100
229 66.67 275 100
230 33.33 276 100
231 100 277 33.33
232 100 278 100
233 100 279 100
234 100 280 100
235 100 281 100
236 100 282 100
237 100 283 66.67
238 100 284 100
239 100 285 66.67
240 100 286 100
241 100 287 100
242 100 288 66.67
243 100 289 100
244 100 290 100
245 100 291 100
246 100

TABLE III: Augmentation parameters

Parameter Name Parameter Value
Distortion 30% probability, grid size=3x3
Rotation 30% probability, max rotation=3

Zoom 30% probability, zoom range = 1.1-1.5
Resize 100% probability, resolution=256x256

TABLE IV: Values of hyperparameters used in this research

SL Name of hyperparameter Value of hyperparameter
1 Learning rate 0.00001
2 Batch size 6
3 Optimizer Adam
4 Epoch 50
5 Loss function Categorical Crossentropy
6 Callbacks Early Stopping with patience 3, Learning rate reduction on Plateau of patience 1 with factor 0.2

The categorical cross-entropy function was used as the loss
function. The hyperparameters used in this research work are
listed in Table IV.

IV. RESULTS

With the hyperparameters and the architecture, we achieved
800 accurate predictions out of 876 test images which give
us an accuracy of 91.32%. The detailed classwise accuracy
for each of the 292 classes are shown in table-I and table-
II. Our proposed architecture achieved very good results on
most of the classes. In some classes, the model misclassified
some characters due to similarity with other classes. Only in
3 classes, the model failed to classify any test data correctly.
The reasoning in mentioned in the next section. To compare
our result with a baseline approach, we used EfficientNetB7
and replaced the Big Transfer model with EfficientNetB7. We
ran the code using similar architectures and hyperparameters.
We got an accuracy of 81.05% for the baseline EfficientNetB7
approach. The loss curve for our proposed approach is given
in Figure 5.

We can see that the model quickly converges and flatlines
the curves and forces an early stopping callback. So, the model
is stable in training.

V. COMMENTS ON MISCLASSIFICATIONS

Most of the misclassifications are happening due to the
similar curvatures of some classes. Figure 6 illustrates such an
example. There are almost 30 classes that are similar to one
another. The model is getting confused among these classes
while recognizing. Therefore, misclassifications are occuring.
In three classes, the misclassification rate is high for this
reason.

VI. CONCLUSION

We prepared a complete dataset called JuktoMala, con-
taining 292 number of compound characters popularly used
in bengali literature. We have accumulated 2920 samples,
containing 10 samples from each classes. We have labeled the
dataset properly. A deep CNN model based on Big Transfer
based M-ResNet 101x3 architecture was developed to classify
the dataset. Our proposed architecture shows very good per-
formance achieving 91.32% accuracy on the test set beating
EfficientNetB7 by more than 10% in terms of accuracy. In
future, more dataset can be collected and thus the performance
of the model might be improved.

REFERENCES

[1] J. Memon, M. Sami, R. A. Khan, and M. Uddin, “Handwritten opti-
cal character recognition (ocr): A comprehensive systematic literature
review (slr),” IEEE Access, vol. 8, pp. 142 642–142 668, 2020.

[2] M. Ali, Bangla Academy Bengali-English Dictionary. Bangla Academy,
2021.

[3] S. R. Zanwar, U. B. Shinde, A. S. Narote, and S. P. Narote, “Handwritten
english character recognition using swarm intelligence and neural net-
work,” in Intelligent Systems, Technologies and Applications. Springer,
2020, pp. 93–102.

[4] V. Sathya Narayanan and N. Kasthuri, “An efficient recognition system
for preserving ancient historical documents of english characters,”
Journal of Ambient Intelligence and Humanized Computing, vol. 12,
no. 6, pp. 6275–6283, 2021.

[5] E. Granell, E. Chammas, L. Likforman-Sulem, C.-D. Martı́nez-
Hinarejos, C. Mokbel, and B.-I. Cı̂rstea, “Transcription of spanish
historical handwritten documents with deep neural networks,” Journal
of Imaging, vol. 4, no. 1, p. 15, 2018.

[6] C. Boufenar, M. Batouche, and M. Schoenauer, “An artificial immune
system for offline isolated handwritten arabic character recognition,”
Evolving Systems, vol. 9, no. 1, pp. 25–41, 2018.

[7] J. Mukhoti, S. Dutta, and R. Sarkar, “Handwritten digit classification in
bangla and hindi using deep learning,” Applied Artificial Intelligence,
vol. 34, no. 14, pp. 1074–1099, 2020.

[8] S. P. Deore and A. Pravin, “Devanagari handwritten character recog-
nition using fine-tuned deep convolutional neural network on trivial
dataset,” Sādhanā, vol. 45, no. 1, pp. 1–13, 2020.

[9] T. K. Bhowmik, U. Bhattacharya, and S. K. Parui, “Recognition of
bangla handwritten characters using an mlp classifier based on stroke
features,” in International Conference on Neural Information Process-
ing. Springer, 2004, pp. 814–819.

[10] U. Bhattacharya, M. Shridhar, and S. K. Parui, “On recognition of
handwritten bangla characters,” in Computer vision, graphics and image
processing. Springer, 2006, pp. 817–828.

[11] N. Das, S. Basu, R. Sarkar, M. Kundu, M. Nasipuri et al., “An improved
feature descriptor for recognition of handwritten bangla alphabet,” arXiv
preprint arXiv:1501.05497, 2015.

[12] N. Das, S. Basu, R. Sarkar, M. Kundu, M. Nasipuri, and D. Basu, “Hand-
written bangla compound character recognition: Potential challenges and
probable solution.” in IICAI, 2009, pp. 1901–1913.

[13] S. Mondal and N. Mahfuz, “Convolutional neural networks based
bengali handwritten character recognition,” in International Conference
on Cyber Security and Computer Science. Springer, 2020, pp. 718–729.

[14] T. Ghosh, M. M.-H.-Z. Abedin, S. M. Chowdhury, Z. Tasnim, T. Karim,
S. S. Reza, S. Saika, and M. A. Yousuf, “Bangla handwritten character
recognition using mobilenet v1 architecture,” Bulletin of Electrical
Engineering and Informatics, vol. 9, no. 6, pp. 2547–2554, 2020.

[15] S. Sharif, N. Mohammed, S. Momen, and N. Mansoor, “Classification of
bangla compound characters using a hog-cnn hybrid model,” in Proceed-
ings of the International Conference on Computing and Communication
Systems. Springer, 2018, pp. 403–411.

[16] A. Ashiquzzaman, A. K. Tushar, S. Dutta, and F. Mohsin, “An efficient
method for improving classification accuracy of handwritten bangla
compound characters using dcnn with dropout and elu,” in 2017 Third
International Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN). IEEE, 2017, pp. 147–152.

[17] S. Ghosh, A. Chatterjee, P. K. Singh, S. Bhowmik, and R. Sarkar,
“Language-invariant novel feature descriptors for handwritten numeral
recognition,” The Visual Computer, vol. 37, no. 7, pp. 1781–1803, 2021.

[18] R. Sarkhel, N. Das, A. Das, M. Kundu, and M. Nasipuri, “A multi-
scale deep quad tree based feature extraction method for the recognition
of isolated handwritten characters of popular indic scripts,” Pattern
Recognition, vol. 71, pp. 78–93, 2017.

[19] P. Keserwani, T. Ali, and P. P. Roy, “Handwritten bangla character and
numeral recognition using convolutional neural network for low-memory
gpu,” International Journal of Machine Learning and Cybernetics,
vol. 10, no. 12, pp. 3485–3497, 2019.

[20] N. Das, R. Sarkar, S. Basu, P. K. Saha, M. Kundu, and M. Nasipuri,
“Handwritten bangla character recognition using a soft computing
paradigm embedded in two pass approach,” Pattern Recognition, vol. 48,
no. 6, pp. 2054–2071, 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[22] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Big transfer (bit): General visual representation learning,”
in European conference on computer vision. Springer, 2020, pp. 491–
507.

