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Abstract—Numerous models and working schemes have been
proposed through decades for the successful recognition of the
objects. Significant contributions are notable in the field of
object recognition. However, near accurate recognition is still
a challenge in this domain. In this research, we considered
the Caltech-101 dataset having 102 diverse and imbalanced
classes i.e., people, animals, landscapes, structures, furniture,
etc. which made the recognition more complicated. We proposed
and utilized modified InceptionV3 and modified EfficientNetB6
architectures for the recognition of objects which obtained
99.65% and 99.72% overall accuracy respectively. We further
showed via experimental analysis that the softmax-averaging
technique can further boost the accuracy to 99.85% and all
three proposed procedures suppressed the previous studies by a
notable boundary as well.

Index Terms—Object Recognition, Caltech-101, Deep Convo-
lutional Neural Network, InceptionV3, EfficientNetB6, Softmax-
averaging, Augmentation

I. INTRODUCTION

Object recognition has always been an essential and inte-
grated part of computer vision and digital image processing
that deals with identifying various groups, for example, faces,
structures, animals, and many other natural and human-made
objects in digital images or videos [1]. In a fast-paced world,
object recognition can be utilized for numerous aspects. Move-
ment perception via video surveillance is one of the most
common tasks of object recognition where multiple people
or objects can be tracked or traced at once in real-time [2].
Another rising industry for object recognition in the computer
vision domain is pictorial explanation where information can
be retrieved or comments can be generated based on the
objects detected in the scene [3]. Object recognition is also
widely utilized in the sports industry. Almost all popular
sports i.e., cricket, football, baseball, basketball, etc. utilize
object recognition for tracking players, sports equipment, and
other essential elements for providing a smooth and satisfying
experience to the spectators. Moreover, face recognition is one
of the basic examples of object recognition where faces can be
recognized by utilizing shape-based features i.e., positions of
eyes, nose, and mouth. Some other important areas related
to object recognition are crowd counting, anomaly detec-
tion, self-driving cars, materials detection, robotics, automated
CCTV, etc. Despite having numerous applications of object

recognition, detecting all these different types of objects by a
single model is a challenging task. Face, animals, structures,
landscapes, furniture, etc. are completely different in shape
and nature than one another which makes the generalization
task of detecting all sorts of objects more complicated.

In this research, the focus has been provided on the chal-
lenge of detecting multiple types of objects. The Caltech-
101 dataset has been considered in this work that consists of
102 different classes. These classes involve people, animals,
landscapes, structures, furniture, natural objects, human-made
objects, and so on. The objective of the research was to
design a deep convolutional neural network model that is
capable of near-accurate recognition. Previously, many kinds
of research have been conducted to find a suitable model
but the performance of the classifiers was not satisfactory. In
this work, modified inceptionV3 and modified efficientNetB6
architectures have been utilized for the recognition of 102
groups. The experimental analysis showed that both of the
architectures are capable of producing a high classification
accuracy of 99.65% and 99.72% respectively. Also, it was
revealed that softmax-averaging of two classifiers boosted
the accuracy even more to 99.85% which outperformed the
previous best accuracy of 94.38% achieved by VGG-16.

II. LITERATURE REVIEW

Object recognition problem has been revisited by the re-
searchers several times through decades because of the devel-
opment of newly formed datasets, and discovery of machine
learning [4], [5] and deep learning algorithms [6], [7]. The
Caltech-101 dataset has been also revisited multiple times
throughout the last decade because of its complexity. One
of the very first attempts of Caltech-101 object recognition
was done by Lee et al. in 2009 when the authors proposed a
convolutional neural network-based technique to identify 102
objects and obtained 65.4% overall accuracy [8]. However,
not many contributions have been done since then till 2018.
But after the machine-boost era and the update of the dataset,
the dataset was revisited by researchers. One of the impactful
work was proposed by Song et al. who achieved 83.9% overall
accuracy by utilizing principal component analysis on SIFT
characteristics in 2018 [9]. Li et al. proposed the EL+YcbCr
technique in 2018 as well but obtained 78% overall accuracy
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Fig. 1: Modified InceptionV3 Architecture (Upper Part), Modified EfficientNetB6 Architecture (Lower Part) and Softmax-
averaging Technique (Overall Picture).

[10]. In the meantime, Pan et al. introduced a k-mean reduction
mechanism and utilized a convolutional neural network which
boosted the overall accuracy to 85.78% [11]. However, in
2019, Cubuk et al. introduced augmentation and proved that
it can further boost the overall accuracy by obtaining 86.9%
accuracy [12]. Also, in 2019, Rashid et al. reinvestigated the
SIFT based features but this time by utilizing a convolutional
neural network which produced 89.7% accuracy [13]. Later
that year, another study reported 91.8% overall accuracy as
well [14]. In 2020, a study of different models such as VGG-
16, ResNet-50, MobileNet, DenseNet-121 and NASNetMobile
was published where the authors reported 94.38%, 91.13%,
92.07%, 89.5% and 87.77% overall accuracy respectively [15].
Furthermore, during the same year, Hussain et al. suggested a
deep neural network and classical features based scheme for
object recognition achieving 90.1% overall accuracy [16].

III. MATERIALS AND METHODS

A. Dataset Description

The Caltech-101 dataset was taken under consideration
while conducting our research work which had 102 distinct
pictorial groups or classes [17]. The total number of samples
was 9,145 and the dataset was imbalanced. The diversity of
the dataset was up to the mark because of the variation in
image sizes and types i.e., grayscale and RGB.

B. Convolutional Neural Network

The convolutional neural networks, typically signified by
CNN, is one of the most common aspects of deep learning
modules involving convolution, pooling, and fully connected
layers [18]. Throughout decades, the convolutional neural net-
work has been utilized for medical image recognition, natural
language processing, IoT, self-driving cars and financial data
analysis. Convolution layers typically extract valuable features
from the input data by finding out the best filters. Pooling
layers are utilized for reshaping after applying convolutions
and the fully connected layers serve the service of multilayer
perceptrons. Since CNN doesn’t need additional feature engi-
neering it is considered one of the powerful tools for image
classification.

C. Transfer Learning

Transfer learning refers to the phenomenon of utilizing
previously trained weights to solve a completely new but
somehow similar dilemma [19]. For example, the ImageNet

dataset contains 1,000 different groups. Some of these groups
are extremely similar while others are completely different
from one another. That’s why the ImageNet challenge weights
will be a suitable start for any recognition which involves
similar or different groups. For instance, the classifier that can
classify different types of cars can also classify trucks with
some modifications on the previous weights.

D. Modified InceptionV3 Architecture

InceptionV3 started its journey as a part of the Googlenet
[20] for solving the ImageNet challenge. As the name sug-
gests, it was the third version of Google’s inception CNN
architecture that consists of a total of 311 layers. In this
research, we utilized all those 311 layers of the InceptionV3
architecture. However, after that, we added two fully connected
layers of size 1024 and 512 followed by a dropout of 50% for
each of the fully connected layers. Freezing the layers was
ignored while implementing the InceptionV3 network.

E. Modified EfficientNetB6 Architecture

As model scaling does not modify layer operators in the
baseline network, producing a better baseline network is also
complex. To adequately illustrate the effectiveness of the scal-
ing method, a new mobile-size baseline, called EfficientNet
was constructed [21]. Inspired by [22], it was introduced
by a baseline network by leveraging a multi-objective neural
structure search that optimizes both accuracy and FLOPS.
Therefore, the authors optimized FLOPS despite latency as
they were not targeting any definite hardware design. Here, we
utilized EfficientNetB6 architecture and added two additional
fully connected layers of size 1024 and 512 followed by
50% dropout for each. Freezing the layers was ignored for
EfficientNetB6 implementation as well.

F. Softmax-averaging Mechanism

While applying the output layers for both InceptionV3 and
EfficientNetB6 architecture, the softmax activation function
was utilized. The softmax activation function produces a
probability of recognition for each of the classes. Softmax-
averaging refers to the technique of averaging the softmax
values produced by multiple classifiers and consider the av-
erage matrix as the final outcome. This technique can boost
the overall performance if the classifiers are getting confused
between two classes that are too close to call. For example,
suppose one sample from class B produced softmax values
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TABLE I: Class-wise accuracy, precision, recall, and f1-score (F1.) for softmax-averaging mechanism

Classes Accuracy Precision Recall F1. Classes Accuracy Precision Recall F1.

Background 0.86 1.00 0.86 0.92 helicopter 1.00 1.00 1.00 1.00
Faces 1.00 1.00 1.00 1.00 ibis 1.00 1.00 1.00 1.00

Faces easy 1.00 1.00 1.00 1.00 inline skate 1.00 1.00 1.00 1.00
Leopards 1.00 1.00 1.00 1.00 joshua tree 1.00 1.00 1.00 1.00

Motorbikes 1.00 1.00 1.00 1.00 kangaroo 1.00 1.00 1.00 1.00
accordion 1.00 0.99 1.00 1.00 ketch 1.00 1.00 1.00 1.00
airplanes 1.00 1.00 1.00 1.00 lamp 1.00 1.00 1.00 1.00
anchor 1.00 1.00 1.00 1.00 laptop 1.00 1.00 1.00 1.00

ant 1.00 1.00 1.00 1.00 llama 1.00 1.00 1.00 1.00
barrel 1.00 1.00 1.00 1.00 lobster 1.00 1.00 1.00 1.00
bass 1.00 1.00 1.00 1.00 lotus 1.00 1.00 1.00 1.00

beaver 1.00 1.00 1.00 1.00 mandolin 1.00 1.00 1.00 1.00
binocular 1.00 0.99 1.00 1.00 mayfly 1.00 1.00 1.00 1.00

bonsai 1.00 0.99 1.00 1.00 menorah 1.00 1.00 1.00 1.00
brain 1.00 1.00 1.00 1.00 metronome 1.00 1.00 1.00 1.00

brontosaurus 1.00 1.00 1.00 1.00 minaret 1.00 1.00 1.00 1.00
buddha 1.00 1.00 1.00 1.00 nautilus 1.00 1.00 1.00 1.00
butterfly 1.00 1.00 1.00 1.00 octopus 1.00 1.00 1.00 1.00
camera 1.00 1.00 1.00 1.00 okapi 1.00 1.00 1.00 1.00
cannon 1.00 1.00 1.00 1.00 pagoda 1.00 1.00 1.00 1.00
car side 1.00 1.00 1.00 1.00 panda 1.00 0.99 1.00 1.00

ceiling fan 1.00 1.00 1.00 1.00 pigeon 1.00 1.00 1.00 1.00
cellphone 1.00 0.99 1.00 1.00 pizza 1.00 0.98 1.00 0.99

chair 1.00 0.99 1.00 1.00 platypus 1.00 1.00 1.00 1.00
chandelier 1.00 1.00 1.00 1.00 pyramid 1.00 1.00 1.00 1.00

cougar body 1.00 1.00 1.00 1.00 revolver 0.99 1.00 0.99 0.99
cougar face 1.00 1.00 1.00 1.00 rhino 1.00 1.00 1.00 1.00

crab 1.00 0.97 1.00 0.99 rooster 1.00 1.00 1.00 1.00
crayfish 1.00 1.00 1.00 1.00 saxophone 1.00 1.00 1.00 1.00

crocodile 1.00 1.00 1.00 1.00 schooner 1.00 1.00 1.00 1.00
crocodile head 1.00 1.00 1.00 1.00 scissors 1.00 1.00 1.00 1.00

cup 1.00 1.00 1.00 1.00 scorpion 1.00 0.99 1.00 1.00
dalmatian 1.00 1.00 1.00 1.00 sea horse 1.00 1.00 1.00 1.00
dollar bill 1.00 1.00 1.00 1.00 snoopy 1.00 1.00 1.00 1.00

dolphin 1.00 1.00 1.00 1.00 soccer ball 1.00 1.00 1.00 1.00
dragonfly 1.00 1.00 1.00 1.00 stapler 1.00 1.00 1.00 1.00

electric guitar 1.00 1.00 1.00 1.00 starfish 1.00 1.00 1.00 1.00
elephant 1.00 1.00 1.00 1.00 stegosaurus 1.00 1.00 1.00 1.00

emu 1.00 0.99 1.00 1.00 stop sign 1.00 0.99 1.00 1.00
euphonium 1.00 1.00 1.00 1.00 strawberry 1.00 1.00 1.00 1.00

ewer 1.00 1.00 1.00 1.00 sunflower 1.00 1.00 1.00 1.00
ferry 1.00 1.00 1.00 1.00 tick 1.00 1.00 1.00 1.00

flamingo 1.00 1.00 1.00 1.00 trilobite 1.00 1.00 1.00 1.00
flamingo head 1.00 1.00 1.00 1.00 umbrella 1.00 1.00 1.00 1.00

garfield 1.00 0.99 1.00 1.00 watch 1.00 1.00 1.00 1.00
gerenuk 1.00 1.00 1.00 1.00 water lilly 1.00 1.00 1.00 1.00

gramophone 1.00 1.00 1.00 1.00 wheelchair 1.00 1.00 1.00 1.00
grand piano 1.00 1.00 1.00 1.00 wild cat 1.00 1.00 1.00 1.00

hawksbill 1.00 1.00 1.00 1.00 windsor chair 1.00 1.00 1.00 1.00
headphone 1.00 1.00 1.00 1.00 wrench 1.00 1.00 1.00 1.00
hedgehog 1.00 1.00 1.00 1.00 yin yang 1.00 1.00 1.00 1.00

of [0.6, 0.4] and [0.1, 0.9] for two classifiers when two
classes, A and B, are under consideration. The first classifier
predicted class A where the second classifier predicted class
B. But by taking an average of two we obtain [0.35, 0.65]
which indicates class B. Hence, when two classes are too

close to call, softmax-averaging can boost the performance
significantly even if only one of the classifiers produced the
correct outcome. Fig. 1 shows the modified InceptionV3,
modified EfficientNetB6 architectures and Softmax-averaging
mechanism.
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Fig. 2: Training accuracy and validation accuracy of proposed
modified InceptionV3 architecture

Fig. 3: Training accuracy and validation accuracy of proposed
modified EfficientNetB6 architecture

G. Augmentation

For achieving better performance, the deep learning models
need more examples while training. Often the input data are
not sufficient. There are a couple of main problems behind
acquiring adequate data. Firstly, the real-world datasets are
imbalanced and can reduce the recognition accuracy as the
model will not have enough samples to learn from. Secondly,
the test images can be flipped, rotated, scaled, or noisy. For
example, if we rotate, scale, flip a cat picture, it will still
be a cat picture. Augmentation is the process of solving this
dilemma which generates computational images from the input
samples by utilizing processes like rotating, scaling, zooming,
shearing, flipping, adding noise, etc. [23].

IV. EXPERIMENTAL ANALYSIS

A. Preprocessing

Convolutional neural networks don’t need excessive feature
engineering as these models are capable of extracting im-

TABLE II: Comparison between our proposed works and
notable previous works

Short Description of Methods/Process Overall Accuracy

Convolutional Neural Network [8] 65.40%
PCA on SIFT Features [9] 83.90%
EL+YcbCr Technique [10] 78.00%

K-mean Reduction + CNN [11] 85.78%
Augmentation + CNN [12] 86.90%

CNN on SIFT Features [13] 89.70%
Convolutional Neural Network [14] 91.80%

VGG-16 [15] 94.38%
ResNet-50 [15] 91.13%
MobileNet [15] 92.07%

DenseNet-121 [15] 89.50%
NASNetMobile [15] 87.77%

CNN on Classifical Features [16] 90.10%
Proposed Modified InceptionV3 99.65%

Proposed Modified EfficientNetB6 99.72%
Proposed Softmax-averaging 99.85%

portant features by themselves. However, resizing the images
was necessary as both InceptionV3 and EfficientNetB6 take
images that have an input size of 224x224x3. Moreover, for
better training of the parameters, augmentation was utilized via
the augmentor library. Rotation function with maximum left
and right rotation of 3 and 40% probability of rotation was
utilized while applying augmentation. For the zoom random
function, 90% area was utilized with a probability of 20%,
and the random distortion function utilized grid height and
width of 4 with 40% probability having a magnitude of 4.
The augmentation process ended with 400 pictures per group,
40,800 images for 102 groups in total.

B. Experimental Design

The learning rate was fixed to 0.0001 for both modified
InceptionV3 and modified EfficientNetB6 architectures. The
models were run for 25 epochs each. The batch size was fixed
to 24 which was the highest value that our machine could
handle. ‘Adam’ optimizer [24] was utilized for optimization.
Momentum and RMSprop optimizations were skipped as
‘Adam’ optimizer utilizes both aspects of them. A categorical
cross-entropy function was practiced for the loss function.
To bypass overfitting, dropouts were utilized and tuned for
both models. ReLU activation was utilized for all convolution
layers.

C. Result Analysis

The process started by splitting the dataset into 80:20 ratios
where 80% of the data were kept for training and 20% data
were kept as the test set. After applying augmentation on the
training data, the train data was split in 80:20 as well where
80% data were kept in the training set and the rest of the 20%
data were kept in the validation set. The difference between
the validation set and the test set is that the validation set
is a part of the training phase as the goal of training is to
minimize the training and validation loss at the same time.
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On the other hand, the test set is totally independent and has
no impact on training. After splitting the dataset, modified
InceptionV3 and modified EfficientNetB6 were applied. The
reason for modifying the InceptionV3 and EfficientNetB6
models by adding additional layers is to channel the most
important features only to the decision making output layer.
Modified InceptionV3 achieved an overall accuracy of 99.65%
and modified EfficientNetB6 achieved 99.72% accuracy. Both
of them suppressed the previous studies by a fine margin.
But to boost up the overall performance even more, we
utilized the softmax-averaging technique and obtained 99.85%
overall accuracy. Fig. 2 shows the training and validation
accuracy while the training phase for modified InceptionV3
architecture. On the other hand, Fig. 3 shows the training
and validation accuracy while training phase for modified
EfficientNetB6 architecture. TABLE I illustrates the class-wise
precision, recall, and accuracy where TABLE II represents the
comparison in terms of overall accuracy among our proposed
models and previous works. It can be noticed that our proposed
models have suppressed the previous works by a noteworthy
boundary.

V. CONCLUSION

In this research, we started with a benchmark dataset,
Caltech-101 with 102 groups with a variety of objects i.e., peo-
ple, faces, furniture, structures, animals, etc. which made the
recognition more difficult. We utilized modified InceptionV3,
modified EfficientNetB6, and softmax-averaging technique for
the recognition obtaining 99.65%, 99.72%, and 99.85% overall
accuracy respectively. Augmentation was also introduced in
this work. After comparing the results, it turned out that our
models have suppressed the previous works by a distinct mar-
gin. Moreover, InceptionV3 and EfficientNetB6 utilize 23.8
million and 43.2 million parameters - 67 million parameters
in total. On the other hand, the previous best result obtained
via VGG-16 utilized 138.3 million parameters which made
our process more cost-effective. However, 67 million is still a
huge number and implementation in mobile devices is still
challenging. Designing a low-cost CNN model for object
recognition is the most promising future work in this domain.
Investigating with other datasets and on real-life pictures may
reveal some possible future works as well.
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