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Abstract—Researchers have been conveying and producing
various models for the precise identification of objects for a long
period now. Distinguished contributions are notable in the field
of object identification. Numerous benchmark datasets are now
available for composing an effective model that can discover
a large number of target classes without a tremendous loss in
performance. In this study, we began with a benchmark dataset
Caltech-101 which consists of 102 classes. Being an extremely
imbalanced dataset and having a blend of RGB and Gray
images, the recognition is extremely challenging. We proposed
and implemented a modified DenseNet-201 design after the
preprocessing steps and produced an overall accuracy of 99.73%
which exceeded all the previous results or achievements by a
noteworthy boundary.

Index Terms—Object Recognition, Caltech-101, Transfer
Learning, Modified DenseNet-201, Augmentation

I. INTRODUCTION

Object detection is a combined piece of computer vision and
image processing that operates with recognizing appearances
of semantic aims of a distinct group e.g. persons, buildings,
or vehicles in digital photos and videos [1]. Fully reviewed
fields of object detection cover face detection and pedestrian
revealing. Object identification has utilization in diverse realms
of computer vision, including photo retrieval and video inspec-
tion. Object discovery is largely employed in computer vision
jobs e.g. pictorial explanation [2], movement study [3], face
detection, face classification, video target segmentation. It is
additionally studied in tracing targets, for example tracking a
ball while a football or soccer match, tracking the movement
of a cricket or baseball bat, or following a person in a video.

Every target group has its private sole characteristics that
serve in recognizing the group – for example, each circle
is round. Target group identification employs these unique
properties. For example, when looking for circles, targets
that are at a particular range from a point (the center) are
investigated. Furthermore, while browsing for squares, targets
that are orthogonal to ridges and have the same side measures
are demanded. A similar method is exercised for face classifi-
cation where eyes, nostrils, and mouth can be discovered and
characteristics like skin condition and range separating eyes
can be achieved. Beforehand, comprehensive efforts have been
done on object discovery. For our research, we examined the

Caltech-101 dataset. To precisely classify or identify the target
classes, firstly, some preprocessing steps were performed.
After that, the dataset was divided into the train set, validation
set, and test set. We implemented a modified DenseNet-201
model on the training data. Test data was employed to achieve
the performance of our proposed model. At the end of the
study, our proposed architecture achieved an overall accuracy
of 99.73% which outperformed all the previous studies by a
distinguished margin.

II. LITERATURE REVIEW

Object detection has been a region of concern for the
researchers for a decade now [4], [5]. Both machine learning
[6], [7] and deep learning [8], [9] concepts have been applied
for the recognition of targets so far. In this study, we’ve
analyzed a benchmark dataset Caltech-101. Previously, many
works have been accompanied by this dataset. In 2009, Lee et
al. suggested a CNN based strategy to identify the classes and
produced an overall accuracy of 65.4% [10]. In 2018, Song
et al. proposed the principal component analysis technique on
SIFT features to achieve 83.9% overall accuracy [11]. Another
research during the same year proposed an EL+YCbCr based
method to identify the classes with an accuracy of 78%
[12]. A research effort of Pan et al. recommended a k-mean
reduction design on deep CNN features achieving 85.78%
accuracy [13]. In 2019, a deep CNN and SIFT feature-based
method produced an accuracy of 89.7% by practicing entropy-
based determination and deep fusion [14]. Throughout the
same year, a study was proclaimed concerning augmentation
during identification obtaining an accuracy of 86.9% [15].
Later that year, another study presented an overall accuracy of
91.8% [16]. An research of 2020 achieved an overall accuracy
of 94.38%, 91.13%, 92.07%, 89.5% and 87.77% for VGG-
16, ResNet-50, MobileNet, DenseNet-121 and NASNetMobile
respectively [17]. Furthermore, during the same year, another
study recently achieved a classification accuracy of 90.1%
[18].

III. MATERIALS AND METHODS

A. Dataset Description

In this study, we examined the Caltech 101 benchmark
dataset involving 102 classes [19]. There were various num-
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Fig. 1: Modified DenseNet-201 Architecture

Fig. 2: Training accuracy and validation accuracy of our
proposed architecture

bers of samples per class; hence, it was an imbalanced dataset.
The dataset includes both RGB and gray pictures which makes
the identification method more complex. There was a total of
9145 pictures in the dataset.

B. Transfer Learning

Transfer learning focuses on gathering knowledge collected
while determining one obstacle and performing it to another
but similar predicament [20]. For example, the knowledge
gathered while learning to distinguish cars could utilize dur-
ing the perception of trucks. This field of research shows
an exceptional connection to the enduring history of cere-
bral investigation on the transfer of learning, though certain
similarities among the two fields are incompetent. From a
pragmatic perspective, transferring or dispatching knowledge
from earlier succeeded assignments for the training of new
jobs can dramatically improve the individual performance of
an agent.

C. Modified DensNet-201 Architecture

The widespread foundation of Convolutional Neural Net-
work (CNN) can be located in [21]. Nevertheless, in con-
ventional CNN, all layers are constantly correlated which
makes the network difficult to stretch wider and deeper, as it
may evolve beyond difficulties of either collapsing or gradient
missing conditions. After that, ResNet proposed an approach
to engaging the shortcut attachment by jumping at least two
layers. Then, DenseNet additionally developed the model by
concatenating all the characteristic graphs sequentially instead
of summation of the output characteristic charts from all
former layers. In this study, we’ve introduced a modified
DenseNet-201 architecture which is represented in Figure-1.
After the DenseNet-201 basic layers, we implemented a fully

Fig. 3: Training loss and validation loss of our proposed
architecture

connected layer of size 512 supported by a dropout layer of
50%. Finally, an output layer is attached having a size of 102.
While training by the design, no layer was held frozen.

D. Augmentation

Inadequate data has forever been a remarkable restriction
while performing deep learning structures like convolutional
neural networks. Furthermore, imbalanced data in terms of
labels can be a supplementary obstacle. While there may be
adequate data for some groups, uniformly significant, but the
under-sampled groups will undergo ineffectual class-specific
performance or suitability. This aspect is compatible. If the
model learns from a few examples or events of a presented
class, it is less feasible to prophesize the group label and
test label. Image augmentation artificially produces training
photographs through various methods of processing or associa-
tion of multiple processing, such as random rotation, transfers,
shear, and flips, etc. [22].

IV. EXPERIMENTAL ANALYSIS

In this section, firstly, preprocessing will be discussed. After
that design of the experiment and result analysis will be
presented.

A. Preprocessing

Because of rendering pictures to a convolutional neural
network, a heavy preprocessing of the images was jumped
as CNN is a compelling network that can extract impor-
tant characteristics from raw pictures. Nevertheless, some
preprocessing measures were needed. The input photographs
were in various aspects, therefore, they were reshaped to
224x224x3. For more proper identification, augmentation was
implemented with the compensation of the Augmentor Library
[34]. While implementing the procedure of augmentation, the
max left rotation, the max right rotation, and the probability
of rotation of the rotation function was fixed to 3, 3, and 0.4
respectively. The values of grid width, grid height, probability,



TABLE I: Class-wise Precision, Recall and F1-Score

Classes Precision Recall F1-Score Classes Precision Recall F1-Score

Background Google 0.99 0.85 0.91 helicopter 0.99 1.00 1.00
Faces 1.00 1.00 1.00 ibis 1.00 1.00 1.00

Faces easy 1.00 1.00 1.00 inline skate 1.00 1.00 1.00
Leopards 1.00 0.96 0.98 joshua tree 0.96 1.00 0.98

Motorbikes 1.00 1.00 1.00 kangaroo 1.00 1.00 1.00
accordion 1.00 1.00 1.00 ketch 0.99 1.00 1.00
airplanes 1.00 0.99 0.99 lamp 1.00 1.00 1.00
anchor 1.00 1.00 1.00 laptop 0.98 1.00 0.99

ant 1.00 1.00 1.00 llama 1.00 1.00 1.00
barrel 1.00 1.00 1.00 lobster 1.00 1.00 1.00
bass 1.00 1.00 1.00 lotus 0.97 1.00 0.99

beaver 0.99 1.00 1.00 mandolin 1.00 1.00 1.00
binocular 1.00 1.00 1.00 mayfly 1.00 1.00 1.00

bonsai 1.00 0.97 0.98 menorah 1.00 1.00 1.00
brain 1.00 1.00 1.00 metronome 1.00 1.00 1.00

brontosaurus 1.00 1.00 1.00 minaret 1.00 1.00 1.00
buddha 1.00 1.00 1.00 nautilus 0.99 1.00 1.00
butterfly 1.00 0.98 0.99 octopus 0.99 1.00 1.00
camera 1.00 1.00 1.00 okapi 1.00 1.00 1.00
cannon 1.00 1.00 1.00 pagoda 1.00 1.00 1.00
car side 1.00 1.00 1.00 panda 1.00 1.00 1.00

ceiling fan 1.00 1.00 1.00 pigeon 1.00 1.00 1.00
cellphone 1.00 1.00 1.00 pizza 0.99 1.00 1.00

chair 1.00 1.00 1.00 platypus 1.00 1.00 1.00
chandelier 1.00 1.00 1.00 pyramid 1.00 1.00 1.00

cougar body 1.00 1.00 1.00 revolver 1.00 0.99 0.99
cougar face 0.99 1.00 1.00 rhino 1.00 1.00 1.00

crab 1.00 1.00 1.00 rooster 1.00 1.00 1.00
crayfish 1.00 1.00 1.00 saxophone 1.00 1.00 1.00

crocodile 0.97 1.00 0.99 schooner 1.00 0.99 0.99
crocodile head 1.00 1.00 1.00 scissors 1.00 1.00 1.00

cup 1.00 1.00 1.00 scorpion 1.00 1.00 1.00
dalmatian 1.00 1.00 1.00 sea horse 0.99 1.00 1.00
dollar bill 0.99 1.00 1.00 snoopy 1.00 1.00 1.00

dolphin 1.00 1.00 1.00 soccer ball 1.00 1.00 1.00
dragonfly 1.00 1.00 1.00 stapler 1.00 1.00 1.00

electric guitar 1.00 1.00 1.00 starfish 1.00 1.00 1.00
elephant 1.00 1.00 1.00 stegosaurus 1.00 1.00 1.00

emu 1.00 1.00 1.00 stop sign 0.99 1.00 1.00
euphonium 1.00 1.00 1.00 strawberry 1.00 1.00 1.00

ewer 1.00 1.00 1.00 sunflower 1.00 1.00 1.00
ferry 0.99 1.00 1.00 tick 1.00 1.00 1.00

flamingo 1.00 1.00 1.00 trilobite 1.00 1.00 1.00
flamingo head 1.00 1.00 1.00 umbrella 1.00 1.00 1.00

garfield 1.00 1.00 1.00 watch 1.00 1.00 1.00
gerenuk 1.00 1.00 1.00 water lilly 1.00 1.00 1.00

gramophone 0.99 1.00 1.00 wheelchair 1.00 1.00 1.00
grand piano 1.00 1.00 1.00 wild cat 0.99 1.00 1.00

hawksbill 1.00 1.00 1.00 windsor chair 1.00 1.00 1.00
headphone 1.00 1.00 1.00 wrench 0.99 1.00 1.00
hedgehog 1.00 1.00 1.00 yin yang 1.00 1.00 1.00

and magnitude of the random distortion function were set to
4, 4, 0.4, and 4 respectively. Moreover, the percentage regions
and the probability of the zoom random function were set to
0.9 and 0.2 respectively. After the augmentation scheme, we
had 400 pictures per group, a total of 40,800 images.

B. Experimental Settings

The model was trained for 25 epochs with a batch size of 24
as after that the validation loss became approximately constant
for the rest of the epochs. ’Adam’ optimizer [23] with the
learning rate of 0.0001 was employed to maximize the error



TABLE II: Comparison between our proposed work and
notable previous works

Classifier or Model Name Overall Accuracy

Lee et al [10] 65.40%
Song et al [11] 83.90%

Li et al [12] 78.00%
Pan et al [13] 85.78%

Rashid et al [14] 89.70%
Cubuk et al [15] 86.90%
Sawada et al [16] 91.80%
Basha et al [17] 94.38%

Hussain et al [18] 90.10%
Proposed 99.73%

function. Categorical cross-entropy function was employed
for the loss or error function. For bypassing overfitting, the
dropout method was utilized.

C. Result Analysis

Firstly, the augmented dataset was divided into the train
set and test set. 80% of the data were stored in the train set
and the rest of the 20% data was stored to test set. Then,
the proposed modified DenseNet-201 architecture was applied
to the train set. Figure-2 represents the training accuracy and
validation accuracy of our proposed design. On the contrary,
Figure-3 represents the training loss and validation loss of
our proposed design. TABLE I represents the precision, recall
and f1-score of each of the classes under consideration. Our
proposed design produced an overall accuracy of 99.73% for
the Caltech-101 dataset. TABLE II represents the comparison
among our proposed work and distinguished former works.
From Table-2 it can be remarked that our proposed design
outperformed all the previous strategies by a notable border,
hence, our model is competent in recognizing the respected
classes more perfectly.

V. CONCLUSION

In this study, we examined a benchmark dataset, Caltech-
101 which involves 102 classes. It is a challenging job to
produce high accuracy for all the groups under consideration
as despite having a large number of groups, the dataset is
extremely imbalanced and the incorporation of RGB and Gray
pictures made the job more challenging. We implemented
augmentation first to balance the dataset. Next, modified
DenseNet-201 architecture was employed. After that, we eval-
uated the performance on the test set and obtained an overall
accuracy of 99.73% which is the highest obtained accuracy
till now. From the result analysis, we settled that our approach
outperformed all the previous works by a notable margin.
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