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A distance metric known as non-Euclidean distance deviates from the laws of Euclidean geometry, which is the geometry that
governs most physical spaces. It is utilized when Euclidean distance is inappropriate, for as when dealing with curved surfaces or
spaces with complex topologies. The ability to apply deep learning techniques to non-Euclidean domains including graphs,
manifolds, and point clouds is made possible by non-Euclidean deep learning. The use of non-Euclidean deep learning is rapidly
expanding to study real-world datasets that are intrinsically non-Euclidean. Over the years, numerous novel techniques have been
introduced, each with its benefits and drawbacks. This paper provides a categorized archive of non-Euclidean approaches used in
computer vision up to this point. It starts by outlining the context, pertinent information, and the development of the field’s history.
Modern state-of-the-art methods have been described briefly and categorized by application fields. It also highlights the model’s
shortcomings in tables and graphs and shows different real-world applicability. Overall, this work contributes to a collective in-
formation and performance comparison that will help enhance non-Euclidean deep-learning research and development in the future.

1. Introduction

For decades, machine learning has been enriched in many
dimensions in terms of rich data inputs, nobler algorithms, and
output optimization. The computer vision’s primary goal is to
analyze, process, and give meaning to digital images. To achieve
this feat, machine-learning (ML) algorithms as per different
methods are being developed day by day [1]. For text-based
models or 1D inputs, K-nearest neighbor (KNN) models are
being used with proficiency [2, 3]. Text-based inputs are more
straightforward as only one dimension is enough to assess
features. Then, came the 2D or image-based algorithms which
are segmented with grids to analyze. Convolutional neural
network (CNN) [4], artificial neural network (ANN) [5], and
recurrent neural network (RNN) [6] models are established as
an almost saturated model for image processing [7-9]. Until

this point, these were directed with structured parameters and
traceable features. While 2D models are tamed, 3D models have
been the main focus in the computer vision department for the
last decade. Modern GPU-based computers’ increasing pro-
cessing power, the accessibility of the size of training datasets,
and effective stochastic optimization techniques have all made it
possible in recent years to design and successfully train complex
network frameworks with numerous degrees of freedom. This
sparked the field’s growth by enabling deep neural networks to
significantly improve productivity with a large range of ap-
plications, starting from processing speech and language for
machine processing to image processing and computer vision.

3D models are more potent in terms of extracting an-
alytics, simply containing more information. Analyzing 3D
datasets became a necessity with the requirements of ana-
lyzing massive information from social media with many
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parameters added with each node [10], observations of
physical objects found in nature with archaeological values
[11], analyzing the protein structures [12], 3D scanning in
the medical department [13], and many more. Virtual reality
is becoming more embedded in the world with each passing
day, but still, it is in its infancy stage, with its usage only in
the entertainment department. For practical embedding of
virtual reality, flawless accuracy must be achieved in ana-
lyzing the 3D surroundings [14]. That said, 3D models come
with non-Euclidean geometry, which brings a lot of diffi-
culties while measuring features.

As 1D and 2D models are easy to organize and con-
nectivity among nodes is prioritized, the CNN model can
easily recognize and analyze the provided input patterns.
These inputs are called Euclidean inputs that feature Eu-
clidean geometry that can be defined with 2D shapes and
figures following explainable mathematical rules. The main
difference lies in Euclidean geometry being only on the same
planes, whereas non-Euclidean geometry is the geometry in
3D places with infinite planes. Thus, conventional 2D ge-
ometry that has been used till now is useless in non-
Euclidean geometry. That said, non-Euclidean geometry
uses complex structures that hold more data. Euclidean
geometry has only one plane to store data and, therefore, has
less freedom for inputs. Existing models for 2D assessment
are being upgraded for 3D analysis and unlocking their full
potential to analyze data of multiple planes. Thus, new al-
gorithms are being created to recognize the 3D analysis by
non-Euclidean deep learning, also known as “geometric
deep learning” [15], taking on a challenge to give structure to
unstructured mesh grids, manifolds, and point clouds.

Data having a non-Euclidean spatial structure is of in-
terest to many scientific disciplines. Social networks in the
field of computational social sciences, sensor networks in
information exchange, functional networks in neuro-
imaging, regulatory networks in genetics, and meshed
surfaces in 3D modeling are just a few examples.

In social networking sites, user characteristics may be
replicated using signals on the vertex points of the social
graph. Distributed, interconnected sensors make up sensor
networks, and their measurements are shown on graphs as
time-varying signals. 3D objects are modeled in computer
vision and graphics as Riemannian manifolds [16] with
attributes like color, texture, and motion fields such as
dynamic meshes. Since these data are non-Euclidean, it
follows that they lack well-known characteristics like global
parametrization, a standard set of coordinates, graph-based
structure, and shift invariance. As a result, fundamental
operations like linear combination and convolution, which
are assumed to be clearly defined in the Euclidean context,
are considerably less, so in non-Euclidean domains. This is
a significant barrier that has prevented the application of
effective deep-learning techniques, like convolution or re-
current neural networks, to non-Euclidean geometric data
up to this point. As a result, fields like computer graphics and
computational sociology have not yet experienced the
practical and theoretical breakthroughs that deep-learning
models have given to voice recognition, natural language,
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and computer vision. So the evolution of this deep learning
begins.

Figure 1 describes practices of deep geometrical learning
that started a while back starting with recursive neural
networks (RvNN) in 1997 and are used on directed graphs
[17]. A breakthrough in machine learning came in 1998 with
the convolution of a neural network, which is further de-
veloped to assist in the creation of many more models for
understanding 3D objects [18]. The reason for the possibility
is local spatial feature extraction in multiscale. The first
modified version of a graph neural network (GNN) [19] to
calculate graph data started its journey in 2005 and fully
came to attention in 2009 with improved performance using
the SL algorithm [20]. Following that, the graph convolu-
tional neural network (GCNN) [21] model was introduced
to counter the difficulties of analyzing non-Euclidean
manifolds. GCNN was followed by lookup-based CNN
(LCNN) [22], which used a learned lexicon feature to encode
CNN convolution. The diffusion CNN (DCNN) [23] also
known as diffusion-convolutional neural network was the
following method put forth to develop a diffusion-based
model of nodes from network data to categorize them. A
common technique for extracting the local feature from the
graph was proposed in the work of GNN, which is com-
parable to convolutional networks that work based on
images and on the inputs connected by local regions.
ChebNet [24] was first proposed in 2016. Following that, an
anisotropic CNN (ACNN) [25] model was introduced that
added a shape factor to CNN for analyzing using shapes as
a unit. PointNet [26] models that already existed were
improved using the recursive structure the following year
and established PointNet++ [27]. Afterward, GCN was
suggested as a more specific variant. CayleyNet [28] was
proposed a year later that used Cayley polynomials to
existing GCN [29]. Two recently proposed models are an-
isotropic Chebyshev spectral CNN (ACSCNN) [30] which
aggregates local feature values for effective signal collection
in 2020 and UV-Net [31] which combines image data with
GCN for low memory overhead cost and computational cost
in 2021. Convolutional networks constituted the foundation
for the research findings mentioned above for graph-based
methods. Similarly, manifold or voxel-based algorithms saw
their development over the years side by side using 3D CNN
as the base model. Working inherently with geometric forms
is commonplace in the field of computer graphics [32]. Here,
3D objects are often treated as Riemannian manifolds and
discretized using meshes.

Many image-based machine-learning methods have
been directly applied to 3D geometric data, with varying
degrees of success, with the data being represented as range
pictures [33, 34] or rasterized volumes [35, 36]. The primary
problem with these methods is that they incorrectly assume
that geometric data can be represented as Euclidean
structures. To explain Figure 2, when dealing with com-
plicated 3D objects, representations based on Euclidean
geometry, such as depth pictures or voxels, may distort or
even destroy the object’s topological structure, resulting in
a considerable loss of information. Second, when an item is
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FIGURE 1: Evolution timeline of the graph convolutional network (GCN).

posed differently or deformed, its Euclidean representation
will change [37].

There have been some reviews on geometric deep
learning in the past few years. Bronstein et al. gave a so-
phisticated overview of this context. Quite a few general
models with corresponding mathematical derivations with
some wide extensive application in 2017 were described in
detail [15]. Zhang et al. [38] reviewed the different types of
deep-learning methods on graphs only [39, 40]. Later on,
Cao et al. [41] reviewed some models with their mathe-
matical derivations on graphs and manifolds.

This paper shifts the emphasis from a broad overview to
computer vision exclusively, since the previous publications
all concentrate on their models in general use cases across
disciplines. Models like UV-Net [31] and MDGCN [42]
presented more recently improved computer vision in an
intuitive manner with effective visual representations for
hobbyist computer vision researchers. In contrast to the
cited publications, the strengths and weaknesses in terms of
the performances of these models are discussed and sum-
marized. Unlike previous works published in the modern
age of computer vision, this one covers a broad range of
cutting-edge applications. The sole contributions of this
study are statistical findings, trends, obstacles, and recom-
mendations for further research. This article provides a de-
tailed examination of current deep-learning architectures in
computer vision, together with an exhaustive account of
their methodology and their applications.

Our contributions can be summarized as follows:

(i) This paper offered a quick summary of mostly used
and efficient non-Euclidean deep-learning models
suggested during the last two decades. In addition, it
offered theoretical and operational analyses of the
model. It has visualizations, explanations, and
mathematical reasoning.

(ii) This literature categorized the models according to
their underpinnings, such as spectral and spatial

types. Newer hybrid frameworks, such as a spatial-
spectral-based model, are also included. Each model
was outlined together with its underlying logic and
operational principles.

(iii) To fully comprehend these models, it has summa-
rized their key features, such as their uniqueness
and their limits, into a performance table. Various
numerical findings demonstrating performance
metrics on their respective datasets are also
included.

(iv) To help put the spotlight on the current trend in this
area, it has compiled a table summarizing the most
recent uses of these graph-based frameworks in
a variety of contexts.

(v) To emphasize the importance, it provides data from
recent research showing the current trajectory and
promising future of the field.

(vi) In light of these most recent work patterns and
technical challenges, this paper analyzed potential
future scopes.

This paper reviews the most recent deep-learning
methods for computer vision on graphs with manifolds
and the applications that traverse them. It started with the
introduction in Section 1 of our article, where it gave
a succinct history and evolution of the various models put
forth over the years. It also discussed the importance and
influence of our field in this section. The background re-
search in the linked fields of the point cloud, graph, and
manifold is detailed in Section 2, along with relevant the-
ories. In Section 3, it has categorized every suggested
methodology for non-Euclidean fields with simple math and
descriptions. The models were divided into GCNs and
manifolds, which were then divided into spectral and spatial
subcategories. Section 4 is devoted to outlining several
current algorithmic limitations, applications, and pro-
spective future opportunities for the progress of our
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FIGURE 2: (a) Image in the Euclidean space and (b) graph data in the non-Euclidean space.

profession. In Section 5, it closes with a summary and
nobility of our paper.

2. Background

Geometric deep-learning models use point clouds, shapes,

graphs, and manifolds whose mathematical operations are
described.

2.1. Point Cloud. Commonly used ways to analyze 3D ob-
jects are to use a laser scanner to gather a lot of data as a point
cloud. Providing them inputs, analysis becomes much more
complicated as all the nodes are undirected and independent
[43]. The points are non-Euclidean and require feature
segmentation for further calculation. Object recognition and
detection take point clouds as inputs in computer vision
tasks due to their availability.

In point clouds, a single point from the point cloud P can
be defined as R - (P, P, P,) € R®, where R is the reference
pointand P,, P, P, represent the 3D position of the point P
[44]. As R® represents the three-dimensional space, navi-
gating between two points is performed by radial rotation
from a fixed point. The connecting line is defined by r, 6, in
which r is the distance between two locations and 6 rep-
resents the angle between the axes.

While the point cloud needs a reference point to be
located and used, the mesh feature allows the points to be
referred through another point. Mesh form is built by point-
by-point addition and reduction of some vertices by
compression.

The data’s complexity necessitates using a B-spline curve
for this kind of mathematical manipulation, as stated above.
In this part, the B-spline curve will be discussed.

2.1.1. B-Spline Curve. Approximate 3D segmentation comes
with a problem of denoting features as fixed or defined as on
continuous curvature surfaces, and there are no reference
points [45]. To counter the problem, the B-spline curve is
presented, which is visualized in Figure 3. At the maximum

B-spline curve

FIGURE 3: B-spline curve.

bending portion, a V-shaped joint is provided called control
points, whereas the corresponding points on the curve are
presented as knot vectors [46]. The control points can be
used as the reference point, and local features can be
obtained.

The B-spline curve of degree d in R® is exemplified by
[47]:

H(t) = )" Si4(t).Cp (1)

where B,,d are the B-spline basis function defined on the
knot vectors and functions on knot vectors are denoted as
Si d [47]

V={0,...,0,v41,-- >V L,..., 1}, (2)

where similar end-to-end points are denoted as d + 1; the
control point [48] P (t) is exemplified by

c={C;R%i=0,...,n}. (3)

A B-spline curvature fits only on a fixed knot vector.
Assuming for any point, when cloud Z = {Z;,k = 0,...,N},
the B-spline curve P (¢) is [48]:

. 1 N 2 1
mlnC[mzk:Od (Zk,P(t)) +

n+1

)L.fs]. (4)
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The minimal distance between Z; and P (t) is stated as
d(Z,, P (1)), in which f| is the term for regularization and A
is the error coefficient. This regularization is defined as in
[49]:

1, 1o,
fe=a JOHP @®)de+ (1 - JO 6]

For 0 < a < 1, multiplicands of @ and (1 — «) are denoted
as f, and f,. Assuming P (t;) to be the projection point on
P(t) of Z;, the local Frenet frame on P(t) at C(t;) is
{T', N;} given that T is unit tangential and N is a unit
normal vector of curvature P (f;).

Let W, = Z; - P (t). The quadratic approximation for
d*(Z,, P(t)) is given by [48]:

P (ZoP®) = v (W T) +(WN). (0

Thus, the local quadratic model [47] is

1 1
F= mzz;)()/k'(WkTTk)z +(WkTNk)2> + m/lfs

(7)

The approximation of F matches to the Gauss—Newton
method for y, = 0, and the approximation leads to intrinsic
parametrization for y; = 1.

2.2. Graph Theory. Graphs have been used for along time for
analyzing and enhancing grid inputs from pictures. For 2D
pictures, grid inputs are directed graphs with components of
link with direction [50]. Being successful in 2D analysis, 3D
observation comes with a few difficulties to handle un-
directed graphs and different types of input of mesh grids.
The undirected graphs are structured by using the discrete
Laplacian and Fourier transform using eigenvectors to add
local features.

Graph theories come with these challenges while
analyzing:

(a) Node classification
(b) Graph categorization
(c) Clustering of nodes
(d) Prediction of link

(e) Influence maximization

A graph [51] is defined by G (V, E) given that V and E
represent vertices and edges, respectively. We assume v; € V
and a;; = (v;,v;) € E. Here, v; denotes the nodes and e;;
denotes edges among v; and v;. For N = |V, the adjacency
matrix A is given by an N x N matrix stated as edge weights.
Here, A;j = a;;>0; ¢;; € Eand A;; = 0; ¢;; ¢ E. Graphs can
be of two types: directed and undirected, based on the types
of edges. The edges are connected with a direction for di-
rected graphs, and undirected graphs have connected edges
without a direction. Thus, A;; = Aj; = 1 for the undirected
and A;; # A;; for the directed graphs.

By analyzing the eigenvalues of the graph Laplacian
matrix, spectral graph theory may provide insight into
whether a graph is linked and the quality of that connection.

The Fourier transform is utilized for eigendecomposition or
the breakdown of a matrix into its parts for the graph’s
Laplacian matrix. The term “convolution” is used to describe
the process of multiplying the input neurons by a set of
weights, sometimes called “filters” or “kernels,” in a graph.
In this part, discrete Laplacian, Fourier transform, and
convolutional operations on the graph will be discussed.

2.2.1. Discrete Laplacian on Graph Theory. Discrete Lap-
lacian (also known as the Laplacian matrix) is a spectral
graph machine-learning algorithm. The Laplacian matrix
allows the creation of a link between discrete inputs of
graphs and manifolds. The function provides a mathemati-
cally tractable solution to graph localization limitations. The
eigenvalues at the adjacency matrix are an essential factor in
localizing two graph vectors as similar graphs provide the
same eigenvalues [52]. Thus, graph Laplacian is a must to
understand the undirected graph.

The Laplacian matrix is given by L = D - A. The degree
matrix is denoted as D such that D;; = }/;A;;. The Laplacian
matrix can be of three forms [53]:

combinatorial: L =D - A,
symmetric normalized: L™ = D™ '*LD™""?
—[_D-2Ap-12

rando m walk normalized: L'* =D 'L=1-D'A.

(8)

Assuming a graph G that is undirected and straight-
forward, the adjacency matrix will only contain 1 and 0.
Thus, the value of L is given by [53]:

((deg(v;);i=j,

Lij =4 —-Lii# j,v;isadjacenttov;,
L 0; else,

(1;i=j,deg (v;)#0,

o _ ] =
i deg(v;)deg (vj)

;i j,v;isadjacenttov;,

L 0; else,

(1;i=j,deg (v;)#0,

LY = i ;i# j,v;isadjacentto v,
deg (v;)’ l !

L 0; else,
(9)
where deg (v;) denotes the degree of the node i. The different

forms of the Laplacian matrix are given by the type of the
degree of the node.



2.2.2. Graph Fourier Transform. Fourier analysis on the
graph is possible as eigenvectors of the Laplacian matrix
represent similar values on the Fourier basis. The Fourier
transform and its reverse enable a node to be present in two
different scales [54]. Given that for any N no of nonnegative,
mutually orthogonal, and independent eigenvalues, the
graph’s Laplacian matrix may be expressed as in [55]:

L=UAU". (10)

Given that A is the eigenvalue and A is the eigenvalue
matrix such that A =14; 0<A, <A, <Ay, the signifi-
cance of the graph’s vertices is represented via the values of
A Also, U = [ug, u; ..., upn_1] € Ryyy and is a matrix of
eigenvectors. Since U is orthogonal, it can be written as
UT-1 =UT. Thus, L will be [54]:

L=UAU". (11)

For using the eigenvectors in the Fourier transform, the
eigenfunction must the transformed via the basis function
e~ ™, For any graph signal, g € RY such that g; is denoted as
the value of i node.

The Fourier transform can be expressed as § = UT and
the inverse Fourier transform as g = U §. Here, eigenvectors
are used as the basis, and the transform projects the input
graphs on the orthogonal space.

2.2.3. Convolutional Operations on Graphs. Using the
Fourier transform of a graph in the frequency domain, the
undirected graph becomes well-directed and component-
wise multiplication transforms. Convolution requires a filter
to find out the compact on convolution layers. Now, for any
input b and using a filter g, the result is [55] as follows:

b g=Ug(A)U"b = g(L)b. (12)

Although the filters bring complexity with the number of
nodes and do not clarify a lot, we use parametrization of §.
Thus, the resultant is [55] as follows:

Go(D) =Y 6,L%, (13)

where g is the polynomial parametrization, whereas g has
a degree of D. The complexity becomes clearer as § is

D-localized with known relation 6, ..., 0;p_y;.

2.3. Manifold Geometry. A manifold can be defined as
curved, but locally, it can be seen as flat, as in Figure 4. Thus,
although a manifold is a non-Euclidean shape, it can be
treated locally as a Euclidean model.

Considering a manifold of the topological space M with
the dimension number of n, Also, let m;, m, € M such that
m, and m, are neighboring points. The inner product of the
tangent space is denoted by (.,.): T;;;M x T, ,M € R given
that T ,, represents the tangential space of the Euclidean part
and R is an abstract manifold capable of comparable
measurements. For describing 3D data objects, computer
vision takes two neighboring surfaces as input and embeds
them in the R? space. Although the model is not completely
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FIGURE 4: Manifold curve with a local plane.

taken as 3D, the completion of embedding creates a 3D
shape to analyze.

2.3.1. Calculus Operation Manifold. Being manifold as non-
Euclidean surfaces, calculus cannot be performed directly as
declaring variables is not possible. However, various
methods have been present to create smooth surfaces on
a manifold that is known as a differentiable manifold. A
differential manifold is just a space on a manifold where
calculus can be performed. That said, manifold data can be
segmented into many more spaces, and the calculus function
must be applied to all of them. Thus, the difference between
normal and manifolds is normal calculus works on only one
dimension, whereas manifold calculus is structured with
higher dimensions to adapt to multiple spaces.

We state that f: M — R, such that f is a smooth
function of manifolds defined in the scalar field, where the
mapping function is given by M — TM. F(x) € T, M,
such that F (x) is a tangent vector at the point x. Considering
Hilbert space fields of L? (M) as a scalar field and L2 (T M) as
a vector field, thus multiplication results [56] are

fr @i ap) = jf<x>g (x)dx,
(14)

(F,G)p2 (ran) = J (F (%), G () pdx.

With dx being the area element, differentiating f results
in df: TM — R. Again, differentiation on the closest
neighbor points is defined as d f (x) = (Vf (x),.)r_p. Now,
applying the operation to the tangent vector,
df (x) = (Vf(x), F(x))r . Now, a small displacement of x
results in Vf: L2(M) — L2(TM) which is the gradient

operator. Thus, divergence [56] becomes
div: L2(TM) — L*>(M):
(F’vf)LZ(TM) = (—diVF,f)Lz(M). (15)

The relation between the gradient and divergence is as
follows [56]:

Af = —div(V f). (16)

Laplacian is found symmetric as in [56]:

(VEVHeawm = (div(VE), Oy = (LA Ny (17)
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For compact manifolds, the functions of x work similarly
to the spectral analysis for graphs. Also, it can be seen that
Laplacian stands as a vital part of analyzing non-
Euclidean space.

2.3.2. Discretization of Manifold. Discretization is required
for data conversion, such as from point clouds to manifolds.
For discretization, a manifold [57] can be sampled by N
points, where the positions of nodes are stated as
X1,%X5,...,Xy, thus creating a graph accordingly. The un-
directed graphs can be difficult to pose for the increase in
nodes of a unit area. Again, the surface can be created as the
mesh (V, E, F), where V is the vertex, E is the edge, and F is
the triangular face [57]: V ={1,...,N}, ijk,ijh € F, and
{G, j), (i,k), (j,k)} € E. The triangular mesh must have the
designated manifold boundary, and the edge length should
be [;;>0, satisfying the inequity of a triangle. For
lij=Illx; = xjll,, cotangent weights are given by
w;; = 1/2(cotay; + cot ;) for the manifold’s
Laplacian mesh.

3. Methods

Because of our familiarity with the background, we can now
analyze many models, each of which uses non-Euclidean
geometric data for a specific reason. This geometry, as said
previously, can be characterized by graphs as well as
manifolds. In network structures like social media or in
general, it learns embedding that integrates knowledge about
its surroundings [58]. Graphs are employed in these network
structures. In addition, manifolds are used in the process of
three-dimensional form, as well as on various complicated
contour surfaces and in model analysis. Convolutional
neural networks (CNNs) are the foundation, on which the
vast majority of these models are typically built, as shown in
Figure 5.

The primary applications of this network include image
processing, classification, and segmentation, in addition to
the processing of various types of autocorrelated data, al-
though it contains GANs and GGNs along with GAEs,
respectively.

3.1. Methods Based on Graph Convolutional Networks
(GCNs). In the actual world, graphs are the most popular
form of data organization, so to deal with it, GCNs fit very
well in a situation like social media connection analysis,
protein model analysis, and traffic control. Every image and
video can be presented as some grids or grid structure data.
To manipulate it, we need the solution of a graph con-
volutional network. In modern technology, deep learning
greatly impacts various developments like games, not just
social networks. Image analysis is a testament to the ef-
fectiveness of deep learning, and it is effective in computer
vision as well. Recently, researchers have been trying to
evolve the architecture based on the graph using some
traditional models like the CNN, long short-term memory
(LSTM), attention mechanism (AM), and autoencoder (AE)
for more efficient performance.

7
Neighbor Node Neighbor Node
T
Neighbor Node
Target Node
Neighbor Node
FIGURE 5: Input graphs of GCNGs.
]
15
—
Input Image Filter Output Array

FiGure 6: Convolutional layer in traditional convolutional neural
networks.

However, it incorporates some problems. As images
could be of different types, their complexities also vary. As
the image contains more complex data (i.e., different lighting
conditions, light, shades, and complex contour structures in
various colors of light), it becomes more difficult to extract
the actual shape from the image. Technically, nodes of the
graphs may vary in large numbers. As a result, the con-
volution operation is very likely difficult in this situation,
and this includes another problem, like data size, as the
nodes of the graphs vary. This introduces new rising
problems each time to these algorithms.

Now, this paper will classify this graph-based model into
three different parts according to their basis of analysis or
method of working:

(i) Spectral-based GNN
(ii) Spatial-based GNN
(iii) Spatial and spectral-based

Researchers try to conclude a common form of con-
volutional network that may work in any scenario. The main
theme of this network is shown in Figure 6. It tries to make
an input graph from the image, set the target, learn from its
neighbor node, and aggregate those to form usable data like
in Figure 7.

This GCN is divided into two kinds. Graph signal
processing is inspired by spectral graph theory, which is the
foundation of graph convolution [59]. Alternately, spatial
domain convolution is the second.
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FIGURE 7: Architecture of graph networks.

Based on the context, it expressed the graph Fourier
Transform and its inverse equation. The equations distin-
guish between spectral and special domains of a graph. g =
U g represents the spatial domain, while § = UT indicates
the spectral domain. Consequently, if a signal g is used in the
spatial domain, g is likewise significant in the spectral do-
main. These signals are typically referred to as kernels, and
the Fourier coefficient of a graph often decays fast. The signal
is compressible since its Fourier coefficients may be cal-
culated from a few graph coefficients.

3.1.1. Spectral-Based GCNs. The spectral-based GCN model
that has been constructed cannot be applied directly to
graphs; nevertheless, because of its effective feature ex-
traction capacity, it may be highly beneficial to extract
features [60]. It is possible to define non-Euclidean con-
volution using it, and by analogy, it may be used to describe
the relation in terms of the frequency domain. In recent
times, the graph Laplacian matrix has been used directly
because its convolutional layer architecture is so effective.

(1) Spectral CNN. The “specifying” architectural cluster in
spectral CNNs includes additional inputs. A vector repre-
senting the network’s most recent output distribution is sent
to the specified input for each training dataset on each
training step. The propagation of this input then proceeds in
a conventional feed-forward manner, with the specification
of a cluster and network layer at the conclusion. This
extracluster is likewise subject to a learning rule. This
strategy comes in a variety of architectural forms: using
a single-layer structure or a multilayer structure, we link the
outputs of the specified cluster with the output layer and

a hidden level of the network [61]. With the use of this
model, convolution filters are altered to provide greater
optimization capabilities via complex-coefficient spectral
parameterization. Competitive outcomes on classification
and approximation tasks were accomplished without the
need for dropout or max pooling thanks to a more recent
method of randomized change of resolution.

(2) CayleyNets. The CayleyNet model is a modified model of
ChebNet [24]. ChebNet uses Chebyshev filters that avoid
expensive computation without using eigenvectors. The
main drawback of the model is that it cannot produce
narrow-band filters. It occurs when there are eigenvalues
clustered around minimal frequencies and the spectral gap is
high [62]. CayleyNets add a new type of filter that takes the
simplicity of the Chebyshev filters and can also produce
narrow-band filters to counter disadvantages. The real value
of a complex function is determined as the Cayley poly-
nomial of order r [24]:

G- W) = v+ 2R Y7 v - @A+ 7} (18)

where v = (v, vy, ..., ,) is given as a vector for a single real
coefficient and r is the coefficient of complex. Z>0 is
denoted as the zoom parameter. For a real signal f, the
Cayley filter is given as G, and defined by [24]:
Gf =9z (A)f
, . , (19)
= vof +2Re] Y v (ah—iD) (z) +iD) .

Parameters of v and z are optimized in training. The filter
works with the basic calculation of matrix operations similar
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to ChebNet. Thus, no eigendecomposition is required for the
G/ filter to work. Cayley filters are based on the rational
function of Laplacian and named ARMA filters. As general
ARMA filters require matrix inversion, there is no way to
ensure stable inversion as the training path is unknown. The
Cayley filters to ensure inversion are stable. Also, the general
ARMA filter uses a larger number of parameters which are
overfitting for the objective, whereas the Cayley filter uses
a moderate number of parameters.

The model presents a new class of extremely regular,
localized, complicated rational Cayley filters that can rep-
resent any smooth spectral transfer function. The funda-
mental characteristic of the model is its ability to maintain
localization in the spatial domain while specializing in
narrow frequency bands with a limited number of filter
parameters.

(3). UV-Net (Boundary Representations). U and V param-
eters of curves and surfaces are clearly expressed, while an
adjacency graph explicitly defines topology in a boundary-
representation data model. That happens when the user
combines convolutional neural networks with image pro-
cessing to create UV-Net [31], a network that both memories
and computes economically.

Numerous topological components, such as faces, edges,
half-edges, vertices, and their connections, compose the
boundary-representation data model. With a few clicks, it
extracts the most critical geometric and topological data
from the boundary-representation and transforms it into
a format suitable for current neural network
architectures [31].

The UV-Net representation offers some benefits:

(1) For both primitive and geometric surface types,
curve assessment of parameters can be applied
quickly and easily [31]

(2) The representation is sparse and proportional to the
number of B-rep contour surfaces

(3) The grid is
parametrization

mostly independent of precise

Using graph convolutions, local curves as well as surface
characteristics are conveyed over the whole boundary rep-
resentation. Curve and surface convolution is performed by
taking 2D UV-grids. For message passing, contour CNNs
are hidden features considered input edges and node fea-
tures of the GNN. We calculate the hidden node features
g,(h) in the graph layer h € 1---H by combining all the
input features of the node g,(h-1) from a one-hop
neighborhood u € A(v) while conditioning them on the
edge features [31] g, (h—1):

ol =a|(1+e)al 3 (1(alt)oull)|

ucA(v)
(20)
Here, a” is an MLP, or in other words, multilayer

perceptron along with two FC (fully connected) layers, e is
a parameter to differentiate the center nodes from the

neighbors, and I, represents linear projection from the edge
to the node feature space [31]. End-point features influence
a concealed edge feature. The following recursive model
underpins this learning process [31]:

w = BN+ FP)an + (g + 0 )] @D

where B is also an MLP having 2 layers. Final shape
embedding is obtained by projecting (linearly) these char-
acteristics into 128 D vectors and summing them [31]:

H (b (h h
gx = thly( ).g" 4+ ™ (22)

The model utilizes existing image and graph convolu-
tional neural networks and can operate on B-rep data. On
both supervised and self-supervised tasks spanning five B-
rep datasets, advantages and adaptability are demonstrated,
outperforming other representations such as point clouds,
voxels, and meshes. A fresh synthetic B-rep dataset with
differences in geometry and topology was once more in-
troduced as SolidLetters.

(4) CurvaNet. Analyzing 2D images with the regular grid is
much less challenging than 3D images using mesh surfaces
or manifold input. Although traditional GNN models seg-
ment and use smaller surfaces, considering them flat, the
model cannot differentiate higher surface changes due to
a lack of data. CurvaNet modifies the GNN model by in-
tegrating differential geometry [63]. Data accuracy is en-
sured by downsampling by mesh pooling and upsampling by
unpooling operation using an encoder and decoder. Thus,
minimization of classification error is done by considering
more input properties. The architecture is quite similar to
the U-Net model, which runs through the curvature filter
(CF) and graph convolution filter (GC) for segmentation.
Skip connection is used to preserve precise boundaries [64].

A directional curvature filter negates fixed curvature
limitations such as data loss and underfits or overfits.
Addressing weight parameter direction is easier by seg-
menting all directions with many tangent vectors. The
vectors must have a unique origin to point out null values. To
ensure fixed parameters are provided for pool rotation for
different angles. Graph convolution layers are used for
sampling a neighborhood using the graph Laplacian matrix.
ChebyNet24 and graph attention network (GAT) 56 are used
for the function. Afterward, the properties of curvature are
conserved by downsampling and upsampling. Let ¢ be the
nonlinear activation function and b and d be the shared
kernels. The feature matrix of curvature yields C, where k is
the interval number and m is the maximum number [63]:

ci(k) = a(ciTAi(k)b(k) + d(k)),

(23)

— ( 1
¢;=max (¢; ’,...,c
To learn the directional curvature features at each vertex
on a mesh surface, the model offers a unique convolutional
filter. The mesh surface’s curvature features are sent using
graph convolutional methods. A U-Net-like hierarchical
structure that downsamples and upsamples a mesh surface
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dependent on mesh simplification was presented to make
use of multiscale curvature features.

(5). Anisotropic Chebyshev Spectral CNNs (ACSCNNs).
Anisotropic Chebyshev spectral CNN [30] is a new shape
correspondence architecture based on manifold convolu-
tion. Extended convolution operators combine local signal
characteristics by a series of directed kernels around each
point, capturing additional signal information. Based on
multiple anisotropic Laplace-Beltrami operator (LBO)
eigendecomposition, spectral filtering is used to train ker-
nels. To decrease computing difficulties, trainable Chebyshev
polynomial expansion coefficients are used to represent
spectrum filters [30].
The manifold X [30] is defined by

M (X) = {g: X —R, I g(x)zdx<oo}, (24)

and dx is the area element.

Vallet and Lévy [65] observed that the eigenvalues and
eigenfunctions of the LBO are comparable to the frequency
as well as Fourier basis in the Euclidean space. The LBO can
be described [30] as

Axg(x) = —=divy (Vxg (x)). (25)

The inner product g(y,) = <g,0,>x is known as the
Fourier transform (coefficient) for manifolds, because the
eigenvalues and eigenfunctions of LBO have periodic
properties. Its inverse Fourier transform for the manifold
g € M?(x) can be expressed [30] as

g(x) = Z <g,0,> x0,(x)
p=0

= Z g(}’p)"p (x).

p=0

(26)

To define the convolution theorem based on manifolds
[30],

(g=m(x)= Y §(r,)h(y,)o, 0. (27)

g(yp)
Anisotropic LBO [66] can be defined as
Axg(x) = =divy (T (x)Vxg (x)). (28)

As illustrated in the following model, ALBO is redefined
[66] as

Apg (x) = =divy (G T4 (x)Cy “Axg (x)). (29)

Here, C, is a revolution about a surface with a normal
angle A on the direction of the tangent, T (x) is a thermal
conductivity tensor, and parameter 3 controls the aniso-
tropic level [30].

Instead of employing anisotropic heat kernels in [25], it
aims to learn kernels that depend on tasks by learning their
parameterized filters ﬁ(y). As stated in [24, 67], a poly-
nomial filter may be used to solve these problems. Cheby-
shev polynomials are adopted to the filter h (), and due to its
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properly functioning, repetitive relation eliminates the
eigendecomposition of ALBO and learning becomes easier
[24, 68]. If the Chebyshev polynomial is L,, (y) of order n, the
filter h(y) can be expressed [30]:

n-1
h(y) = Y boL, (). (30)
n=0

An extension of the manifold convolution operator, the
model suggests the anisotropic convolution operator. Due to
its direction-based consideration, this sort of anisotropic
convolution enables a more thorough capture of the intrinsic
local information of signals when compared to earlier works.
To simplify the computation, Chebyshev polynomials are
used to express the filters with trainable coefficients. In
certain cases, the achieved outcome was superior to that of
the earlier models.

3.1.2. Spatial-Based GCN. Unlike the spectral base, this
convolution can be used directly because the kernel size is
fixed. So it must need to select the neighbor of concern to be
convoluted in a traditional manner. It uses pseudocoordi-
nates by the filter function. These pseudocoordinates ac-
cumulated at the time of convolution. The most difficult
aspect of developing CNNs that function with core nodes
that have a variety of neighboring nodes is establishing local
invariance for such CNNG.

The first intrinsic version of CNNs was introduced by
Masci et al. [16]. Then, evolution began by Boscaini et al. [25]
by introducing anisotropic heat kernels. The more general
framework (MoNet) was then introduced by Monti et al.
[69] to develop the deep convolutional architecture on
graphs and manifolds. Then, the B-spline-based filter was
introduced by Fey et al. [70], which works quite efficiently in
the input of arbitrary dimensionality.

(1) Diffusion CNN (DCNN). The motivation for diffusion
CNN is that a form encompassing graph diffusion can serve
as a more reliable foundation for forecasting than a graph
alone. A simple method for including contextual in-
formation about things that are calculated in polynomial
time and effectively used on the GPU is provided by graph
diffusion, which may be repressed. Many methods, such as
probabilistic structural models and kernel methods, in-
corporate depth information in classification tasks; DCNNs
offer a supplementary strategy that significantly improves
predictive performance at node classifications [23]. When
performing node  classification  tasks,  diffusion-
convolutional neural networks outperform probabilistic
relational models and kernel approaches thanks to the
representation that captures the effects of graph diffusion.
Diffusion processes perform a good job of representing
nodes, but they are ineffective in summarizing complete
graphs.

(2) Graph Neural Network (GNN). The graph neural network
is a supervised neural architecture that works well in terms of
the graph and node-based applications. Two existing
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concepts are combined into a single framework by this
model. The neural network model will be referred to as the
GNN. Both random walk models and recursive neural
networks are shown to be extensions of the GNN and to
retain their features. The model expands repetitive neural
networks because it can handle node-focused tasks with no
processing stage and can analyze a wider range of graphs,
covering cyclic, oriented, and undirected graphs. The
method broadens the range of processes that may be de-
scribed and adds a learning mechanism to random walk
theory [19].

The model offers a cutting-edge neural network archi-
tecture that can handle inputs from cyclic, directed, and
undirected graphs or a combination of these. The diffusion
of information and relaxation mechanisms are the model’s
foundations. Analysis of the outcome shows that the strategy
is also appropriate for huge datasets.

(3) GraphSAGE. To accomplish the objective of node cat-
egorization, GraphSAGE models fully utilize the attribute
information, structure, and knowledge of nodes in social
networks, as well as mine the implicit mutual information
among nodes. The best performance of a graph neural
network may be comparable to that of the graph WL
ISOMORPHISM test when the data structure (update fea-
ture plus aggregate feature) in graph networks is singular.
An enhanced GraphSage [71] method is used to create the
model for learning about GraphSAGE.

The model offers a revolutionary method that makes it
possible to effectively create embeddings for invisible nodes.
GraphSAGE successfully balances performance and runtime
via sampling node neighborhoods, regularly outperforms
state-of-the-art baselines, and offers a theoretical analysis
that sheds light on understanding local graph structures.

(4) Large-Scale Graph Convolution Network (LGCN). The
algorithmic structure cooptimization to speed up large-scale
GCN inference on FPGA is provided to combat the sig-
nificant expense of external storage access when evaluating
the graph-structured dataset. To comply with on-chip
storage restriction, first, data splitting is executed. Then,
to decrease computational complexity and improve data
locality, a two-phase preprocessing approach is created. The
main computational kernels are mapped on an FPGA during
hardware design, and data transmission for pipelined exe-
cution occurs through on-chip memory [72]. Varied GCN
architectures and various analytic orders are supported by
the data path.

The suggested architecture allows for the application of
standard convolutional methods while transforming generic
graphs into data with grid-like patterns. Transformation is
carried out using a brand-new k-largest node selection
method that ranks the values of node features.

(5) Mixture Model CNN (MoNet). For analyzing non-
Euclidean geometries of GCNN and ACNN for graphs,
GCN and DCNN models are proposed, but they come with
some shortcomings. For analyzing, each segment of the
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shape requires a separate local function, while the functions
are not learnable to use on similar locals. Using parametric
construction which can be used in similar localities, a dif-
ferent framework of a mixture model network is presented
[69]. Operations are convolution working on spatial-domain
methods using local parameters of ‘patches’ of manifolds or
graphs [73]. The patches create a local function that can be
represented as a Gaussian kernel mixture.

A general spatial framework is used in mixture model
CNNs for graphs and manifolds. For any point on the
manifold x and the vertex y of the neighborhood N such that
y € N (x), a vector of dimension d and pseudocoordinates
are denoted as u(x, y). A weighting function is achieved
using learnable parameters. Using fixed parameters of
Gaussian kernels and geodesic coordinates, the mixture
model CNN can be reverted to GCNN, ACNN, and GCN
models. The mixture model is based on parametric kernels
by using learnable parameters denoted as follows [69]:

-1
gj(u) = exp (—;(u— wj)TZ (u— wj)>, (31)
j

where Xj is the covariance matrix and w; is a mean vector
constructed from a Gaussian kernel. Covariances are re-
stricted to 2D and 2jD for patch operators.

To achieve deep learning, the aggregate ensemble CNN
model integrates two distinct convolutional neural network
architectures. Two deep-learning networks—AlexNet66 and
NIN67—are integrated to calculate the weighted average of
feature vectors. Based on AECNN modeling runs, we see
that the aggregate model outperforms the single-CNN en-
semble model in terms of classification accuracy and re-
trieval precision for images.

(6) SplineCNN. SplineCNN is a modified version of CNN for
countering the non-Euclidean geometry focused on using B-
spline. The model uses the convolution of spline bases, and
the convolution layer takes undirected data with a directed
graph as input [70].

A trainable set is used to aggregate the node features in
the spatial layer. Represented by 7 (i), the node features are
weighted by the continuous kernel function [74]. The spatial
relation of the nodes is stated by pseudocoordinates in U.
Presenting no restrictions on U, no values are lost in a local
neighborhood as it can contain edge weights, features of
nodes, and local data.

A continuous kernel function is used for the convolution
operation that uses B-spline bases. Constant values of
trainable sets are used for parametrizing the function. For
computation efficiency, all input outside the preset interval is
set to zero. Now, considering a B-spline curvature of degree
d and a trainable variable ¢ ,; € T for every element p formed
from the Cartesian product [70], P = (NT%); x ... x (Ny,);
while [ is the input feature. For I;, as input, the trainable
parameter can be defined as K = Il-n.]_[;j:lki. Now, defining
the continuous convolution function [70] g;[a;,b;] x ... X
[a;b;] — Roas
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gi(w) =Y t,.B,(u), (32)

peP

where B, represents the product of basic functions. Relating
to traditional CNN, SplineCNN uses a normalization factor
as an extra and a differently functioned filter. Otherwise,
SplineCNN can also take 2D inputs with a few kernels to
analyze the dataset.

On irregularly structured, geometric input data, the
model learns. The proposed convolution filter combines
nearby information in the spatial domain by using a train-
able continuous kernel function with trainable B-spline
control values. SplineCNN is the first architecture that
enables robust end-to-end deep learning directly from
geometric data.

3.1.3. Spectral- and Spatial-Based Models. In this method,
models are benefited from both spectral and spatial char-
acteristics. Their combined features use for better data
extraction.

(1) Multiscale Dynamic Graph Convolutional Network
(MDGCN). GCN is capable of performing convolution on
non-Euclidean data and is ideal for irregular image regions
represented by graph topological data [42], so that these two
stages may work together to produce discriminative em-
bedded features and a revised graph, and the graph must be
constantly changed while the graph convolution technique is
running. Simple linear iterative clustering (SLIC) [75] is
utilized when a hyperspectral image is supplied as input. This
approach creates homogeneous superpixels. Then, at dif-
ferent spatial scales, graphs are constructed on the top of
these superpixels. Following that, the input graphs are
further refined by performing convolutions on them, which
simultaneously acquire and accumulate multiscale spectral-
spatial features. In an ideal embedding space, superpixels
possibly belonging to the same class will be grouped. Finally,
the well-trained network produces the categorization results
in [42].

Hyperspectral image categorization is the name of the
proposed model. During the convolution process, MDGCN
utilizes dynamic graphs that are gradually refined. As a re-
sult, the graphs can accurately encode the inherent simi-
larities between image regions and aid in the discovery of
precise region representations. To completely utilize the
multiscale information and gain hidden spatial context with
superior results, many graphs with various neighborhood
scales are built.

3.1.4. Comparison between Spectral- and Spatial-Based
Models. The model that is based on spectral analysis is far
more effective than the spatial one. Although the intricacy of
the calculations grows more difficult as the size of the graph
rises, it uses the eigendecomposition technique inside this
convolution which may modify the results [67]. A summary
of their main points is shown in Figure 8.

On the other hand, spatially based models are more
beneficial in terms of huge graph-based applications. These
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models accomplish localization by grouping the nodes in
their immediate surroundings.

The most significant thing to note is that it may be
applied directly to the graph data in contrast to the spectral
one. While a model based on spectral analysis has difficulty
dealing with graph-based input data, a model based on
spatial analysis can very effectively handle many sources of
graph input (such as edge features and edge directions).

Because it functions well only on certain preset graphs,
the spectral-based approach only has a restricted range of
applications. To put it another way, it is improbable that the
model trained for one application would function well for
another, because its graphs and Laplacian nature are unique.

On the other hand, on a spatial basis, it is somewhat
reliant on each node of graphs. Because of this, it is used
extensively in three-dimensional form and structural anal-
ysis (e.g., shape correspondence on the FAUST dataset).
Because of this, it is relatively easy to apply this model to
a variety of roles and structures. Because of this, the spatial
model is broader and getting more appreciation day by day.

3.1.5. Apart from GCN Architecture. This section will pro-
vide an overview of additional graph neural networks. GAN
and GNN are described here.

(1) Graph Attention Networks (GANs). An attention-based
architecture called graph attention networks is used to
classify nodes in graph-structured data. The goal is to use
a self-attention method to monitor each node’s neighbors to
compute each node’s hidden representations. The attention
structure has several intriguing characteristics, such as ef-
ficient operation, because it may be parallelized over node
neighbor sets. By assigning arbitrary values to neighbors, it
may also be used to graph nodes with varying degrees, and
the method is capable of direct inductive learning issues,
including challenges where the algorithm must generalize to
wholly unknown graphs [76].

(2) Graph Generative Network (GGN). The difficulty of
creating a graph structure for expanding graphs having
different nodes that are disconnected from the previously
observed graph is overcome by graph generative networks
[77]. The slow response issues in social platforms and rec-
ommendation systems it has significant significance. The
fundamental generating process is assumed to be stationary
during growth. Neither node characteristics nor natural
extension to new, isolated nodes is utilized by graph RNN
[6]. Similar problems plague the majority of alternative
graph representation learning techniques; notably, the
separation from the existing graph makes it difficult to apply
aggregation or pass messages. Understanding how graph
architectures are generated consecutively for situations
where node characteristics and topological information are
both present and for situations in which only node char-
acteristics are accessible solves this problem.

A sequential generative model for developing graphs is
proposed that combines graph representation learning and
graph convolutional networks. Scalability, however, is still
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Node
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FIGURE 8: Spectral and spatial model features show distinctive characteristics.

a significant problem because it depends on the size of the
entire graph.

3.2. Method Based on Manifolds. As discussed earlier,
manifolds are nonconventional geometry having a complex
shape. Figure 9 describes the manifold differently as its
smallest portion can be explained as conventional geometry
like a rectangle. The manifold-based model works based on
this rule. Manifolds can be of different complex shapes so
does nature have.

3.2.1. Voxel-Based. Bounded by small boxes, 2D space
images cannot figure the depth of 3D spaces or be further
analyzed as the data become blurry in smaller portions as in
Figure 10. Voxel-based data create an object by segmenting
them piece by piece with a 3D object, thus creating a richer
dataset capable of in-depth analysis with higher accuracy.

(1) ShapeNet. ShapeNet advances CNNs to non-Euclidean
manifolds, demonstrating how to use them to create in-
variant shape descriptors. Utilizing a local network of
geodesic coordinates, ShapeNet produces “patches” that are
then put to a range of techniques and linear as well as
nonlinear operators [78]. These filters’ parameters are op-
timization parameters that can be trained to reduce a loss
function that depends on the task at hand. Because of the
framework’s considerable flexibility, different descriptors
can be obtained depending on the requirements by com-
bining several layers with various configurations. CNNs are
expanded to manifolds by using the idea of geodesic con-
volution. The design, known as ShapeNet [78], is made up of
numerous tiers that are applied in succession, meaning that
the result of one layer advances as the input for the next

FIGURE 9: Manifold (torus) shows the analysis of manifold and
assumes segments as Euclidean geometry.

process. The depth of the model is measured by the number
of “hidden” layers that exist between both the input and
output levels. The levels are followed as fully connected,
ReLU, convolution of geodesic, angular max pooling, and
Fourier transform magnitude.

The Siamese neural network [79], a well-liked archi-
tecture that has been extensively employed in metric
learning tasks, is how ShapeNet is trained. A Siamese net-
work comprises two identical models with the same pa-
rameterization and is fed by pairs of data that are
purposefully similar or distinct. The loss is minimized in the
model [78]:

1(2) =1 -y)l+(2)+yl-(2), (33)

where y € [0, 1] denotes the differential parameter between
the losses [78],
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(a)

(b)

FIGURE 10: (a) Voxel data using 3D segment and (b) image data using the 2D grid. Because of higher dimensions, quality becomes higher

than that of the right one.
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where & is the variable of the ShapeNet model. The set of
layers is given as T, = {(g%, g%)}, and the negative parts are
pulled at margin .

With the use of non-Euclidean manifolds, the model
suggests generalizing convolutional neural networks to learn
hierarchical task-specific features. The model is extremely
flexible and general, and it may be made arbitrarily com-
plicated by stacking additional layers. The model improves on
various prior shape descriptor approaches by energizing them.

3.2.2. Multiview-Based. If 2D views for different surfaces are
combined, a good idea of the 3D object can be obtained, as
shown in Figure 10. Based on this fact, the multiview model
takes different 2D features as input, as in Figure 11(a), and
combines them by view pooling for analyzing 3D objects, as in
Figure 11(b).

(1) Multiview Convolutional Neural Networks (MVCNNSs). A
conventional CNN architecture taught to detect forms’
generated viewpoints that are not linked to one another
shows a 3-dimensional shape that can be detected from
a single view with greater accuracy than using 3-dimensional
form descriptors of the highest quality [33]. Multiple shapes

improve recognition rates. This new CNN architecture in-
tegrates many perspectives of 3D geometry into a single
description for improved recognition. This multiview de-
piction of 3D forms is useful for many activities. First, we
utilize existing 2D picture attributes to create a view de-
scription. This is the simplest way to use multiview. Multiple
2D image descriptors per 3-dimensional form, one per view,
must be integrated for recognition jobs [33].

For image descriptors, two types of image descriptors for
each 2D view: a state-of-the-art “hand-crafted” image de-
scriptor based on Fisher vectors [80] with multiscale SIFT
and CNN activation features [81] are used in this model.
One-versus-rest linear SVM was trained to categorize forms
using picture information [33]. A measurement of distance
or likeness is essential for retrieval tasks. Taking shape as x
along with r, as image descriptors and shape y with r, image
descriptors, the space around them is calculated as in
equation (42). The space between two 2D images can be
expressed as z,, and the space between their feature vectors
is lp; - qj||2. So it is as follows [33]:

S = <ijini||p,~ - qj“2> (Ziminj"pi - q]'”z)
P9 = (r,) " (2r,) '

(35)

The model suggests using these several 2D projections,
which produce excellent discrimination performance.
Compactness, efficiency, and improved accuracy can be
attained by creating descriptors that are aggregations of data
from many viewpoints. Additionally, these 3D shapes can be
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FIGURE 11: (a) Shape analysis with different views; (b) the multiview model architecture takes views as 2D input to analyze 3D objects.

recovered using sketches with high precision and take ad-
vantage of the implicit understanding of 3D shapes included
in their 2D views by connecting the information of 3D
shapes to 2D representations like sketches.

3.2.3. Difference between Volumetric CNN and MVCNN.
A 3D form is encoded in the volumetric representation as
a 3-dimensional tensor of binary or real values. Oppositely,
the multiview representation organizes a 3-dimensional
form as an accumulation of multiple perspective repre-
sentations. It seems intuitive that the volumetric represen-
tation should be able to input extra information about the
characteristics of three-dimensional structures rather than
the multiview representation. The most important highlights
are shown in Figure 12.

However, Qi et al. [36] replicated the tests using a grid
of 30 voxels with 3D ShapeNets with multiview CNNs on
the ModelNet40 dataset. According to the data, the cate-
gorization performance of individual algorithms suggests
that the volumetric CNN with voxel-dependent perfor-
mance is 7.3% less accurate than the MVCNN [82]. There
are at least two probable explanations, including the input
data performance and the diversity in network architecture
[36]. However, when both networks are fed equal levels of
information, the accuracy of the classification of MVCNN’s
is much higher (89.5%) than that of 3-dimensional

3D form
accumulated
Data Combined from multi-
with sphere perspective
representations e
Better \ / Input is
classification / generated.
performance Multi View from multi-
CNN angle views
Volumetric
3—D‘f0rm 4—/ CNN Larger
is ot
encoded / \\ > 12P11
ata
- Provides
vl:i_:;rl?ezi < 7.3% accurate
as input value 1.n
comparison

FiGURE 12: MVCNN vs. volumetric CNN model features.

ShapeNets (84.7%). In this experiment, data from
MVCNNSs are combined with sphere representations of the
grid of 30 equal in height, width, and length. Even with
lower features (resolution) of input data, the classification
performance of the MVCNN is much greater than that of
3D ShapeNets. This shows that the design of VCNNs has
many opportunities for improvement.
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3.2.4. Point-Based. The advantage of the point-based ap-
proach is that it may take point cloud data as input without
first transforming it to voxel, mesh, or another type of 3D
representation. A point cloud is a combination of geo-
metrically important points that form a structure. In place of
a large number of benefits, there are certain difficulties, such
as sparsity and the unpredictability of the geometric data.
Because it may be used effectively in various contexts, re-
searchers are becoming more interested in this model. As
a direct consequence of this, there is persistent progression
[83, 84].

(1) PointNet++. PointNet++ [27] is a hierarchical structure
of the neural network that performs recursion of PointNet
[26] on layered partitioning of the input. It is a direct
successor of PointNet. Although PointNet was the very first
DNN capable of manipulating 3D point clouds natively,
several networks have since been developed. It learns the
spatial coding of every location in the input cloud and then,
by aggregating all the features, it determines the global
characteristics of a point cloud. However, PointNet++
removes its shortcoming by solving how a local division of
a point cloud can be carried out and how local characteristics
of a point cloud can be extracted. In other words, it learns
about local characteristics with increasing contextual scales
[27]. Using an analysis of metric space lengths, Qi et al. [27]
claimed that it is capable of learning features very robustly,
even in nonuniformly sampled point sets. The way it extracts
features can be briefed into three sections:

(a) Sampling Layer. The sampling method is known as
FPS, or farthest point sampling, which begins its
work by picking a random series of points out from
point cloud functioning as its input.

(b) Grouping Layer. The objective of the grouping layer
is to construct local areas before extracting charac-
teristics. More specifically, this research uses the
neighborhood ball approach rather than the KNN
algorithm since it is feasible to ensure a set area scale.
Multiple subpoint clouds are created by employing
surrounding points surrounding centroid points
(within a defined radius) [27].

(c) PointNet Layer. As described earlier, it uses the
PointNet algorithm to originate preliminary as-
sumption and then run it through some iterations to
get closer to the extraction of features.

In terms of 3D shape, there may be an ununiform density
of sampling points like the perspective effect, and radial
density variations cause great trouble learning features. Qi
et al. [27] proposed an abstraction layer that may aggregate
information from multiple aspects according to local point
densities. By this algorithm, the author comes up with an
accuracy of 90.7% in ModelNet40 [83].

The model is suggested for handling sampled point sets
in the metric space. PointNet++ efficiently learns hierar-
chical features concerning the distance metric by performing
recursive operations on nested partitioning of the input
point set. Two unique sets were suggested abstraction layers
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that intelligently aggregate multiscale data following local
point densities, producing improved results to address the
problem of nonuniform point sampling.

(2) Taylor GMM Convolutional Network (TGNet). The Taylor
GMM convolutional network constructs a graph pyramid
through clustering point clouds. In each layer of the pyra-
mid, local regions are abstracted progressively. For learning
local features, TGConv is applied and the targeted data are
again interpolated at a finessed scale at each layer. On
a similar scale, the features are interconnected [85]. TGNet
uses limited computation, and information losses occur. To
counter the issue, MLP can be applied to input for con-
serving information along the process. Finally, sampled
features and the finessed scale are combined for per-point

segmentation.

The TGNet model is driven by TGConv [86]. Let a graph
G=(V,E,D) formed of a point cloud
C={c,cp...,c,JSR?, where V ={1,2,...,n} is the col-

lection of vertices and ECV x V is the collection of edges
[86]. Every directed edge (x,y) € E has 3D pseudo-
coordinates defined as d (x, y) given that D is the set of the
coordinates. We consider all point y € H (x), where S is the
neighbor set vertex x, d (x, y) which indicates a 3D vector of
coordinates of y. Let a = {a,a,, ...,ay} be the set of input
features of the vertex. For F as a feature dimension, the
features a; € RF' are associated with a related graph icV.
Local coordinates are generated from input characteristics
using Taylor kernel functions [86] with Gaussian weighting.
The learnable weighted functions are denoted by D. The
convolution function is performed by the aggregation of the
feature sets and is given by [86]:

(f * 9 = Agg( 90 Yo, D.(a, ) )y € HGx. (36)

The model suggested altering the linear combination of
convolutional feature maps in the conventional convolu-
tional operation of CNNs to collect detailed high-frequency
and low-frequency information. It is shown that TaylorNets
have a nonlinear combination of the convolutional feature
maps based on Talyor expansion 87. The steerable module
created by TaylorNets is generic, making it simple to include
in various deep architectures and to be taught using the same
backpropagation algorithm pipeline. This results in a higher
representational capacity.

(3) MongeNet. In the ShapeNet model, triangular meshes are
used for sampling 3D surfaces, but sampling gets irregular as
the surface angle changes and clamping or undersampling
occurs. The problem can be defined as a transport problem
of discrete measures and simplex. MongeNet is a neural
network working as a uniform mesh sampler to counter the
mentioned problem [87]. Computation is performed on
GPUs and batchwise across triangles. This model’s direct
competitor is the current cutting-edge sampler PyTorch3D.
Test findings suggest that, for a moderate increase in
computational cost, the model provides greater performance
than the previous model.
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MongeNet is proposed to replace the already established
sampling technique using a triangle mesh. The model
minimizes 2-Wasserstein distance which implies favorable
transport distance for segmented Euclidean metrics [87].
MongeNet approximation relies on solving convex which
relies on Laguerre tessellation for computing the optimal
distance.

Generally, solving the resulting point cloud should
consume a lot of time with a high cost, but the model
proposes learning optimal positional points using a feed-
forward neural network with satisfactory approximation and
fast calculation. Stating that the network is denoted as fy,
where 8 is the learnable parameter. The input is the triangle
with limited output points such that o € [a,b] and random
noise #n € R that follows the normal distribution, and the
output provided is a random order of f,(t,0,n) € R**°. For
training set D with components [t,S], the sampled points
[87] are

N b
argminﬂz ZL(fg (tr0.m,),S;). (37)

i=a o=a

Stating W¥ as optimal transport and n; ~ N (0, 1), the
loss function L is given as follows [88]:

L(t,0,n,S) = W5(f4(c,0,n),S)
- ocW;(fe (c,0, n),fg(c, o, n,>>.

The model overcomes drawbacks of the common mesh
sampling approach used by most 3D deep-learning models,
such as its proneness to erroneous sampling and clamping,
which leads to noisy distance estimates. For a small addi-
tional investment in computer deep learning, MongeNet
outperforms already used methods, such as widely used
random uniform sampling.

(38)

3.2.5. Spatial-Based. Spatial convolution is the imple-
mentation of graph-based convolution processes directly.
Being the size of the standard convolution kernel predefined,
a predetermined-length neighborhood must be selected for
convolution if standard convolution is performed on
a graph. However, graph nodes often contain a variable
number of neighbors despite data with a normal grid form.
The graph convolution technique mimics the image con-
volution process and is constructed from spatial node re-
lationships. Similar to the central pixel in normal CNN 3 x 3
filters, the presentation of a center node depends on the
aggregate output of its neighboring nodes.

(1) Geodesic Convolutional Neural Networks (GCNN). The
GCNN [16] model is an extension of non-Euclidean man-
ifolds of the convolutional neural network (CNN) paradigm.
This local geodesic framework of polar coordinates is used to
extract “patches,” which pass through a series of filters in-
cluding linear and nonlinear processes. To reduce a task-
specific cost function, the values of the filters with linear
combination weights are optimized variables. Utilizing the
diagonal results of heat-like operators yields a variety of very
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well spectral-shaped descriptors. Thus, spectral descriptors
may be utilized as heat kernel signature (HKS), wave kernel
signature (WKS), and optimal spectral descriptors (OSDs)
[16]:

(D) f) (p, 6) = jxvp,e (ax)r(x)ax. @

Mapping is performed by (D (x) f) (p, 8), and the value
of the function f is in the range of xeX to the neighbor
polar coordinates (p,0), in which v, (x, x') is the radial
interpolation weights having a geodesic distance from x
revolving around p, v, (x, x') represents the angular weights
derived from a collection of geodesics radiating from x in
direction 0, dx indicates the surface component of the
Riemannian measure, and v, 5 localizes a weighting function
around Voo [16]. (D(x)f)(p,0) in GCNN converts the
values for the function f around the node x into the regional
polar coordinates p, 8, hence forming the geodesic convo-
lution [16]:

(f * ) (x) = MaXpge 000 j h(p, 6+ A8)(D(x) f) (p, 6)dp 46,
(40)

where h(p, 0+ Af) acts as a filter. GCNN is composed of
numerous consecutively applied layers. The layer is differ-
entiated as follows:

(1) Typically, the linear layer comes after the input layer
and before the output layer to modify the input and
output sizes by a linear function.

(2) The usual Euclidean convolutional layer is replaced
with the geodesic convolution (GC) layer.

(3) The angular max pooling layer combines the GC
layer to estimate the optimum filter rotation [16].

(4) The FTM layer is an extra constant layer that per-
forms the patch operation to every input dimension,
proceeded by rotational coordinates as well as actual
value Fourier transform.

(5) The covariance (COV) layer is utilized in recovery
applications that need the aggregation of point-wise
descriptors into something like a descriptor of global
shape [89].

The model was developed for uses like shape corre-
spondence or retrieval to learn hierarchical task-specific
features on non-Euclidean manifolds. Our model is ex-
tremely flexible and general, and by stacking additional
layers, it may be made arbitrarily complicated. By altering
the local geodesic charting process, GCNN could be used for
different form of representations, such as point clouds.

(2) Anisotropic Convolutional Neural Networks (ACNNs).
These networks are generalization of standard CNNs to non-
Euclidean entities in which traditional convolutions are
substituted by projections over a set of centered approach
anisotropic diffusion kernels [25]. As spatial scaling func-
tions, anisotropic heat kernels retrieve the inherent regional
representation of a function defined on the manifold. This
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ACNN architecture is a CNN. This patch operator design is
far easier than those of GCNN, irrespective of the manifold’s
subsurface diameter, which is not limited to triangular
meshes. The basis of this method is the generation of re-
gional geodesic polar coordinates utilizing a technique that
may have been used for fundamental shape context
descriptors [90].

ACNN translates heat kernels as a regional weighted
function and builds the patch operator as follows [25]:

[ xhaer (6, 9) f (9)dy (41)
thaﬂl (X, y)d)/ ’

and for some anisotropy level, a> 1. h g (x, y) is the an-
isotropic heat kernel that indicates the quantity of heat
transmitted at the period t from the point x to the point
y [25].

Convolution [25] can be described as

(f #b)(x) = Jb(@, (D, (x)f)(6,0dtde.  (42)

(D, (%)) (6,1) = <

The major curvature direction is primarily used as the
reference 6 = 0 in ACNN’s creation. The most potential
future work path is the use of ACNN to graph learning.
GCNN and ACNN approaches work in spatial domains;
avoiding the limitations of standard spectral approaches
with varied domains, these techniques have proven to be
more successful than traditional hand-crafted methods in
locating deformable shapes.

Convolutional neural networks are generalized to non-
Euclidean domains in the proposed model, which enables
deep learning on geometric data. The work, which is cur-
rently the most generic intrinsic CNN model, continues the
very recent trend of applying machine-learning techniques
to computer graphics and geometry processing applications.

The provided models are fairly efficient and beneficial for
a variety of reasons; therefore, their results and analyses are
quite valuable for surveying their efficacy on various data-
sets. The accuracy and error of the previously stated models
are summarized in Table 1 together with their related
datasets.

A second perspective was studied, based on the Scopus
string  TITLE-ABS-KEY (geometric AND deep AND
learning, OR graph, OR manifold) AND (LIMIT-TO
(PUBSTAGE, “final”)) AND (LIMIT-TO (PUBYEAR, 2022)
OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUB-
YEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIM-
IT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017)
OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUB-
YEAR, 2015)) AND (LIMIT-TO (SUBJAREA, “COMP”))
AND (LIMIT-TO (EXACTKEYWORD, “Deep Learning”)
OR LIMIT-TO (EXACTKEYWORD, “Geometry”) OR
LIMIT-TO (EXACTKEYWORD, “Deep Neural Networks”)
OR LIMIT-TO (EXACTKEYWORD, “Convolution”) OR
LIMIT-TO (EXACTKEYWORD, “Convolutional Neural
Networks”) OR LIMIT-TO (EXACTKEYWORD, “Com-
puter Vision”) OR LIMIT-TO (EXACTKEYWORD,
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“Convolutional Neural Network”)) which is shown in Ta-
ble 2. It describes the most advanced uses of computer vision
applications of these models, including object detection,
medical imaging, face detection, action, and activity de-
tection, human pose detection, network detection, and
pedestrian trajectory. These applications are stated along
with their specific employments.

3.2.6. Comparative Analysis of Described Models. Table 1
provides a comparative analysis of described models in
terms of numerical values, novelty, and their limitations,
which is sorted according to the proposed year. Initially,
ShapeNet [78] was proposed in 2015 in the field of non-
Euclidean geometry which was successful in terms of gen-
eralizing CNN to learn specific features. However, it is only
limited to mesh features. With continuous improvements, in
the same year, MVCNN [33] was proposed which is compact
and eflicient with improved accuracy. However, the 3D
descriptor is untested. Later on, in 2017, TGNet [85]
changed the linear convolution of CNN in the feature map,
but its TGConv has a very narrow dynamic range. In 2017,
MoNet [69] was proposed to ensemble the CNN model, but
this method does not follow segmentation and weighted
categorical cross-entropy outcomes.

In the next year, SplineCNN [70] was proposed which
uses trainable continuous kernel functions and B-spline
values to extract local features. However, its global behav-
ior becomes worse along the large geodesic error. In 2019,
CayleyNet [28] was proposed, which specializes in small
frequency bands with few filter parameters while main-
taining spatial localization. However, its bidirectional line
cost is more, and the routing method is more sophisticated.
In this continuation, CurvaNet [63] proposed in 2020 for
a U-Net-like hierarchical structure is shown to exploit
multiscale curvature characteristics but does not have
structural regularization such as segment class topology. In
this succession, MDGCN [42] initiated in 2020 utilizes
dynamic graphs that are gradually refined and can accurately
encode the inherent similarities between image regions.
LSTM is used which requires high computational cost. The
introduced GC unit has lower-order approximations of
spectral graph convolution.

Again in 2020, ACSCNN [30] offers anisotropic con-
volution enabling a more thorough capture of the intrinsic
local information of signals. However, the model needs
shape segmentation and classification. In 2021, MongeNet
[87] was proposed. The gap between the target point cloud
and the sample point cloud from the mesh shrunk more
quickly. So, at a given optimization time, the input point
cloud was represented more accurately. However, it is
a costly and time-consuming computation. This year, UV-
Net [31] utilizes existing image and graph convolutional
neural networks and can operate on B-rep data. However,
the model did not use the B-rep curve and surface types, edge
convexity, half-edge ordering, etc. Moreover, UV-grid fea-
tures do not rotate.
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FIGURE 13: Graph shows documents published by year (till 2022), and charts show published documents by type.

4. Future Prospects and Challenges

These models are meant to deal with data that cannot be
conveniently represented in the Euclidean space and have
shown exceptional performance in tasks like shape identi-
fication, chemical design, and social network analysis. These
non-Euclidean deep-learning models have several promising
applications, including computer vision, robotics, natural
language processing, and drug discovery. As a result, the
future scope of non-Euclidean deep-learning models is very
promising, and the research area is expanding in this field at
an impressive rate. In addition to computer vision, it has
already been used in applications such as Al pathfinding, 3D
mapping, medical diagnostics, molecular analysis, VR-based
applications, and even big data classification.

The extracted data by the string are plotted as “Docu-
ment Published by Year” and “Documents by Type” in the
following graphs and pie chart in Figure 13.

The bar graph gives information about documents
published by year (till 2022). According to the graph, it can
be seen that the number of publications started to increase
from 2015 to 2021. In 2015, there were 14 documents
published. Then, 42 were published in 2016 (an increased
121%), 91 were published in 2017 (an increased 116%), 174
were published in 2018 (an increased 91%), 349 were
published in 2019 (an increased 100%), and 498 were
published in 2020 (an increased 42%). It was highest in 2021
when the document published the most, 591 published (an
increased 18%). 311 documents were published till the first
half of 2022.

From the pie chart, it is clear that conference paper is
published at the highest rate at 1126, and 890 articles were
published in the document. However, the review rate is too
poorer than the article and conference paper. There are
a total of 31 reviews. In 100% of the pie chart, the total type of
documents published is as follows: conference paper 55%
(1126) + article 43% (890) + review 1.5% (31) =100% (2047).

By evaluating the statistical future, it may be concluded
that demand for geometrically based deep learning will
increase. However, it leads us to newer challenges and
difficulties day after day. Some difficulties are solved, and
more of these are just ahead of us.

Various usages and challenges are illustrated in Fig-
ure 14. As challenges tend to be resolved, our future will
progress toward these advanced applications. Key points of
challenges are visualized and explained as follows:

(1) Computational Difficulties. Despite the success of
GNN in several disciplines, the high cost of com-
puting remains a challenge for academics and ap-
plications. A DNN includes a high set of variables,
which makes testing and training stages computa-
tionally costly. It requires higher hardware computer
resources like GPUs. GNN exhibits the same char-
acteristics. In addition, computation is difficult due
to the complex relationship among graph nodes as
well as the nongrid structure. In contrast, the great
majority of existing deep-learning systems deal with
normalized datasets in the Euclidean space, such as
a 1D or 2D grid, which may make use of the strong
processing capacity of contemporary GPUs. In most
instances, however, geometric data may not have
a grid-like structure, necessitating other approaches
for efficient and sophisticated computing. Therefore,
accelerating graph neural network performance is
a pressing demand.

(2) Complex Architecture. Concerning the issue of Eu-
clidean data, the CNN architecture has achieved
remarkable progress in the area of deep learning. The
model gets more sophisticated as the number of
network levels grows. Empirically, neural networks
with more variables have the potential to perform
well. However, stacked multilayered GNNS will
exacerbate the smoothness issue. The nodes in
a graph are connected to their surroundings, as well
as the graph function in a network is a stream of data
dispersion and consolidation. The more layers that
are stacked, the more data from nodes will be in-
tegrated, resulting in an identical picture for all
nodes. Consequently, each vertex will fall to the same
value. For instance, the majority of complex GCN
architectures include little or more than three or four
layers. The study [206] sought to use a more so-
phisticated network architecture; however, its
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efficacy is insufficient. Nonetheless, in 2019,
DeepGCNs [207] were able to construct a 56-layer
network by leveraging the concepts of residual
connections as well as dilated convolutions. Building
a neural network based on a deep graph is an in-
teresting yet difficult challenge.

(3) Unpredictable Graph. Most known techniques are
used to edit static graphs, and many datasets are also
static, though many graphs change over time. In
social media platforms, the reduction of existing
users and the addition of new users may occur at any
time, as well as the relationship among members can
vary considerably. The question of how to adequately
describe the development of dynamic graphs is
unresolved, which has some impact on the appli-
cability of graph neural networks. There are several
efforts to resolve this issue such as [208-210].

(4) Scalability. It is a challenging challenge to apply
graph neural networks on huge graphs. On the one
side, each node seems to have its neighborhood
topology, which includes the hidden layer of sur-
rounding nodes, making it challenging to train using
the batch technique [39]. In contrast, while dealing
with millions of nodes and edges, the Laplacian
matrix of the network was challenging to compute
for researchers. There are additional approaches to
increase the performance of the model by quick
sampling [211, 212] and subgraph training [213, 214]
although the results are not particularly impressive.

5. Conclusion

Even while deep learning has traditionally relied on Eu-
clidean geometry, the modern era’s complex structural ge-
ometry demands the use of non-Euclidean geometry. The
current world is aiming to include this non-Euclidean ge-
ometry in these deep-learning methods to satisfy the need
for 3D complex structure analysis. Learning from

25

complicated data, such as graphs and manifolds, is made
easier using this geometric deep learning. Here, this paper
explores the field of deep learning for manifolds and graphs
at length. An in-depth look at the history, context, state-of-
the-art and efficient mathematical deep-learning models,
performance analysis, and pros and cons of deep networks
used in computer vision on graphs and manifolds is pre-
sented in this paper. In addition, it is expensive and requires
significant resources to deploy. Moreover, dynamic graphs
and shapes demand a sophisticated real-time system, al-
though it needs a great deal of more development for ev-
eryday usage. At this rate, however, it is reasonable to
anticipate a more widely available advanced model for
a variety of challenging classification tasks.

Abbreviations

P, P, P, Single points of point cloud P
g Fourier transform

Axg(x):  Laplace-Beltrami operator

R: Reference point

g: Inverse Fourier transform

M?(X):  Manifold

r: Distance between two locations

f: Smooth function of manifolds

L, (y): Chebyshev polynomial

0: The angle between the axes
f(x): Closest neighbor points

h (): Filter

H(t): B-spline curve

gy, (A):  Cayley polynomial

o Anisotropy level

Sia: Knot vectors

G Cayley filter for f signal

n(i): Node features

P(t): Control points

g, (h): Hidden node features

B, Product of basic functions

fs Regularization

a: Multilayer perceptron

1(2): Minimized loss

A Error coefficient

e®: Differentiate center nodes and neighbors

T,: Set of layers

V: Vertices

U: Eigenvector matrix

lp; —q jII: Space between feature vectors

E: Edges

ly: Linear projection

T Tyt Image descriptors

G (V,E): Graph function

B MLP (2 layers)

S: Neighbor set vertex

L: Laplacian matrix

o: Nonlinear activation function
(p, 0): Neighbor polar coordinates

D: Degree matrix

C: Feature matrix of curvature
v, (x,x): Interpolation weight
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A: Adjacency matrix
k: Interval number
(D(x)f): Mapping function
A Eigenvalue matrix
m: Maximum number

hye (%, ¥): Anisotropic heat kernel.
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